BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 36171094)

  • 21. Interplay between compartmentalized NAD
    Cohen MS
    Genes Dev; 2020 Mar; 34(5-6):254-262. PubMed ID: 32029457
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Weight Loss Is Associated With Increased NAD(+)/SIRT1 Expression But Reduced PARP Activity in White Adipose Tissue.
    Rappou E; Jukarainen S; Rinnankoski-Tuikka R; Kaye S; Heinonen S; Hakkarainen A; Lundbom J; Lundbom N; Saunavaara V; Rissanen A; Virtanen KA; Pirinen E; Pietiläinen KH
    J Clin Endocrinol Metab; 2016 Mar; 101(3):1263-73. PubMed ID: 26760174
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PGC-1α, Sirtuins and PARPs in Huntington's Disease and Other Neurodegenerative Conditions: NAD+ to Rule Them All.
    Lloret A; Beal MF
    Neurochem Res; 2019 Oct; 44(10):2423-2434. PubMed ID: 31065944
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanisms governing PARP expression, localization, and activity in cells.
    Sanderson DJ; Cohen MS
    Crit Rev Biochem Mol Biol; 2020 Dec; 55(6):541-554. PubMed ID: 32962438
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Clickable NAD analogues for labeling substrate proteins of poly(ADP-ribose) polymerases.
    Jiang H; Kim JH; Frizzell KM; Kraus WL; Lin H
    J Am Chem Soc; 2010 Jul; 132(27):9363-72. PubMed ID: 20560583
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Role of NAD+, SIRTs Interactions in Stimulating and Counteracting Carcinogenesis.
    Podyacheva E; Toropova Y
    Int J Mol Sci; 2023 Apr; 24(9):. PubMed ID: 37175631
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biosensor reveals multiple sources for mitochondrial NAD⁺.
    Cambronne XA; Stewart ML; Kim D; Jones-Brunette AM; Morgan RK; Farrens DL; Cohen MS; Goodman RH
    Science; 2016 Jun; 352(6292):1474-7. PubMed ID: 27313049
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of Nuclear NAD
    Brown EE; Scandura MJ; Pierce E
    Adv Exp Med Biol; 2023; 1415():235-239. PubMed ID: 37440039
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Are poly(ADP-ribosyl)ation by PARP-1 and deacetylation by Sir2 linked?
    Zhang J
    Bioessays; 2003 Aug; 25(8):808-14. PubMed ID: 12879452
    [TBL] [Abstract][Full Text] [Related]  

  • 30. TNB-738, a biparatopic antibody, boosts intracellular NAD+ by inhibiting CD38 ecto-enzyme activity.
    Ugamraj HS; Dang K; Ouisse LH; Buelow B; Chini EN; Castello G; Allison J; Clarke SC; Davison LM; Buelow R; Deng R; Iyer S; Schellenberger U; Manika SN; Bijpuria S; Musnier A; Poupon A; Cuturi MC; van Schooten W; Dalvi P
    MAbs; 2022; 14(1):2095949. PubMed ID: 35867844
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolism and biochemical properties of nicotinamide adenine dinucleotide (NAD) analogs, nicotinamide guanine dinucleotide (NGD) and nicotinamide hypoxanthine dinucleotide (NHD).
    Yaku K; Okabe K; Gulshan M; Takatsu K; Okamoto H; Nakagawa T
    Sci Rep; 2019 Sep; 9(1):13102. PubMed ID: 31511627
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NAD
    Wagner S; Manickam R; Brotto M; Tipparaju SM
    Mol Cell Biochem; 2022 Jun; 477(6):1829-1848. PubMed ID: 35334034
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of Poly(ADP-ribose) Polymerase-1 Enhances Gene Expression of Selected Sirtuins and APP Cleaving Enzymes in Amyloid Beta Cytotoxicity.
    Wencel PL; Lukiw WJ; Strosznajder JB; Strosznajder RP
    Mol Neurobiol; 2018 Jun; 55(6):4612-4623. PubMed ID: 28698968
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NAD⁺/NADH metabolism and NAD⁺-dependent enzymes in cell death and ischemic brain injury: current advances and therapeutic implications.
    Ma Y; Nie H; Chen H; Li J; Hong Y; Wang B; Wang C; Zhang J; Cao W; Zhang M; Xu Y; Ding X; Yin SK; Qu X; Ying W
    Curr Med Chem; 2015; 22(10):1239-47. PubMed ID: 25666794
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PARP is involved in replicative aging in Neurospora crassa.
    Kothe GO; Kitamura M; Masutani M; Selker EU; Inoue H
    Fungal Genet Biol; 2010 Apr; 47(4):297-309. PubMed ID: 20045739
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NAD⁺ in aging, metabolism, and neurodegeneration.
    Verdin E
    Science; 2015 Dec; 350(6265):1208-13. PubMed ID: 26785480
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ARTD1 (PARP1) activation and NAD(+) in DNA repair and cell death.
    Fouquerel E; Sobol RW
    DNA Repair (Amst); 2014 Nov; 23():27-32. PubMed ID: 25283336
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibiting poly ADP-ribosylation increases fatty acid oxidation and protects against fatty liver disease.
    Gariani K; Ryu D; Menzies KJ; Yi HS; Stein S; Zhang H; Perino A; Lemos V; Katsyuba E; Jha P; Vijgen S; Rubbia-Brandt L; Kim YK; Kim JT; Kim KS; Shong M; Schoonjans K; Auwerx J
    J Hepatol; 2017 Jan; 66(1):132-141. PubMed ID: 27663419
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Potent and Specific CD38 Inhibitor Ameliorates Age-Related Metabolic Dysfunction by Reversing Tissue NAD
    Tarragó MG; Chini CCS; Kanamori KS; Warner GM; Caride A; de Oliveira GC; Rud M; Samani A; Hein KZ; Huang R; Jurk D; Cho DS; Boslett JJ; Miller JD; Zweier JL; Passos JF; Doles JD; Becherer DJ; Chini EN
    Cell Metab; 2018 May; 27(5):1081-1095.e10. PubMed ID: 29719225
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sirtuins and their interactions with transcription factors and poly(ADP-ribose) polymerases.
    Jęśko H; Strosznajder RP
    Folia Neuropathol; 2016; 54(3):212-233. PubMed ID: 27764514
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.