These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36171210)

  • 1. Synergy of metal nanoparticles and organometallic complex in NAD(P)H regeneration via relay hydrogenation.
    Wang M; Zhao Z; Li C; Li H; Liu J; Yang Q
    Nat Commun; 2022 Sep; 13(1):5699. PubMed ID: 36171210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal Nanoparticles Immobilized on Molecularly Modified Surfaces: Versatile Catalytic Systems for Controlled Hydrogenation and Hydrogenolysis.
    Bordet A; Leitner W
    Acc Chem Res; 2021 May; 54(9):2144-2157. PubMed ID: 33822579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme-Compatible Core-Shell Nanoreactor for in Situ H
    Wang M; Dai H; Yang Q
    Angew Chem Int Ed Engl; 2023 Sep; 62(39):e202309929. PubMed ID: 37584440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selectivity Control by Relay Catalysis in CO and CO
    Cheng K; Li Y; Kang J; Zhang Q; Wang Y
    Acc Chem Res; 2024 Mar; 57(5):714-725. PubMed ID: 38349801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-organic frameworks as selectivity regulators for hydrogenation reactions.
    Zhao M; Yuan K; Wang Y; Li G; Guo J; Gu L; Hu W; Zhao H; Tang Z
    Nature; 2016 Nov; 539(7627):76-80. PubMed ID: 27706142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemoselective hydrogenation of arenes by PVP supported Rh nanoparticles.
    Ibrahim M; Poreddy R; Philippot K; Riisager A; Garcia-Suarez EJ
    Dalton Trans; 2016 Dec; 45(48):19368-19373. PubMed ID: 27878165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tandem hydrogenation/hydrogenolysis of furfural to 2-methylfuran over multifunctional metallic Cu nanoparticles supported ZIF-8 catalyst.
    Kulkarni BB; Maradur SP
    Bioresour Technol; 2024 Jun; 402():130805. PubMed ID: 38718905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen evolution from aliphatic alcohols and 1,4-selective hydrogenation of NAD+ catalyzed by a [C,N] and a [C,C] cyclometalated organoiridium complex at room temperature in water.
    Maenaka Y; Suenobu T; Fukuzumi S
    J Am Chem Soc; 2012 Jun; 134(22):9417-27. PubMed ID: 22577897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-Atom Alloys as a Reductionist Approach to the Rational Design of Heterogeneous Catalysts.
    Giannakakis G; Flytzani-Stephanopoulos M; Sykes ECH
    Acc Chem Res; 2019 Jan; 52(1):237-247. PubMed ID: 30540456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How absorbed hydrogen affects the catalytic activity of transition metals.
    Aleksandrov HA; Kozlov SM; Schauermann S; Vayssilov GN; Neyman KM
    Angew Chem Int Ed Engl; 2014 Dec; 53(49):13371-5. PubMed ID: 25294745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Half-sandwich rhodium(III) transfer hydrogenation catalysts: Reduction of NAD(+) and pyruvate, and antiproliferative activity.
    Soldevila-Barreda JJ; Habtemariam A; Romero-Canelón I; Sadler PJ
    J Inorg Biochem; 2015 Dec; 153():322-333. PubMed ID: 26601938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergy between the metal nanoparticles and the support for the hydrogenation of functionalized carboxylic acids to diols on Ru/TiO2.
    Primo A; Concepción P; Corma A
    Chem Commun (Camb); 2011 Mar; 47(12):3613-5. PubMed ID: 21308122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Palladium nanoclusters supported on propylurea-modified siliceous mesocellular foam for coupling and hydrogenation reactions.
    Erathodiyil N; Ooi S; Seayad AM; Han Y; Lee SS; Ying JY
    Chemistry; 2008; 14(10):3118-25. PubMed ID: 18260070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MIL-100(Fe) Supported Pt-Co Nanoparticles as Active and Selective Heterogeneous Catalysts for Hydrogenation of 1,3-Butadiene.
    Liu L; Han Z; Lv Y; Xin C; Zhou X; Yu L; Tai X
    ChemistryOpen; 2022 Mar; 11(3):e202100288. PubMed ID: 35191614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal dependent catalytic hydrogenation of nitroarenes over water-soluble glutathione capped metal nanoparticles.
    Sharma S
    J Colloid Interface Sci; 2015 Mar; 441():25-9. PubMed ID: 25485808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ni Nanoparticles Supported on Cage-Type Mesoporous Silica for CO2 Hydrogenation with High CH4 Selectivity.
    Budi CS; Wu HC; Chen CS; Saikia D; Kao HM
    ChemSusChem; 2016 Sep; 9(17):2326-31. PubMed ID: 27531065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation and nitrile hydrogenation performance of Ru nanoparticles on a K-doped Al2O3 surface.
    Muratsugu S; Kityakarn S; Wang F; Ishiguro N; Kamachi T; Yoshizawa K; Sekizawa O; Uruga T; Tada M
    Phys Chem Chem Phys; 2015 Oct; 17(38):24791-802. PubMed ID: 26344789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic activity of Pd-doped Cu nanoparticles for hydrogenation as a single-atom-alloy catalyst.
    Cao X; Fu Q; Luo Y
    Phys Chem Chem Phys; 2014 May; 16(18):8367-75. PubMed ID: 24658397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resin-Immobilized Palladium Nanoparticle Catalysts for Organic Reactions in Aqueous Media: Morphological Aspects.
    Mastrorilli P; Dell'Anna MM; Rizzuti A; Mali M; Zapparoli M; Leonelli C
    Molecules; 2015 Oct; 20(10):18661-84. PubMed ID: 26473823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbohydrate-derived 1,3-diphosphite ligands as chiral nanoparticle stabilizers: promising catalytic systems for asymmetric hydrogenation.
    Gual A; Godard C; Philippot K; Chaudret B; Denicourt-Nowicki A; Roucoux A; Castillón S; Claver C
    ChemSusChem; 2009; 2(8):769-79. PubMed ID: 19598200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.