BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

527 related articles for article (PubMed ID: 36171633)

  • 1. Peptide-based PROTAC degrader of FOXM1 suppresses cancer and decreases GLUT1 and PD-L1 expression.
    Wang K; Dai X; Yu A; Feng C; Liu K; Huang L
    J Exp Clin Cancer Res; 2022 Sep; 41(1):289. PubMed ID: 36171633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FOXM1 promotes reprogramming of glucose metabolism in epithelial ovarian cancer cells via activation of GLUT1 and HK2 transcription.
    Wang Y; Yun Y; Wu B; Wen L; Wen M; Yang H; Zhao L; Liu W; Huang S; Wen N; Li Y
    Oncotarget; 2016 Jul; 7(30):47985-47997. PubMed ID: 27351131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FOXM1 regulates glycolysis in hepatocellular carcinoma by transactivating glucose transporter 1 expression.
    Shang R; Pu M; Li Y; Wang D
    Oncol Rep; 2017 Apr; 37(4):2261-2269. PubMed ID: 28260073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cell-penetrating FOXM1 N-terminus (M1-138) demonstrates potent inhibitory effects on cancer cells by targeting FOXM1 and FOXM1-interacting factor SMAD3.
    Zhang Z; Bu H; Yu J; Chen Y; Pei C; Yu L; Huang X; Tan G; Tan Y
    Theranostics; 2019; 9(10):2882-2896. PubMed ID: 31244930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Interaction of GLUT1 and FOXM1 Leads to a Poor Prognosis in Colorectal Cancer.
    Kuai XY; Lei ZY; Liu XS; Shao XY
    Anticancer Agents Med Chem; 2020; 20(8):941-950. PubMed ID: 32188390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of USP7 induces p53-independent tumor growth suppression in triple-negative breast cancers by destabilizing FOXM1.
    Yi J; Li H; Chu B; Kon N; Hu X; Hu J; Xiong Y; Kaniskan HU; Jin J; Gu W
    Cell Death Differ; 2023 Jul; 30(7):1799-1810. PubMed ID: 37291217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteolysis-targeting chimeras (PROTACs) in cancer therapy.
    Li X; Pu W; Zheng Q; Ai M; Chen S; Peng Y
    Mol Cancer; 2022 Apr; 21(1):99. PubMed ID: 35410300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting of the FOXM1 Oncoprotein by E3 Ligase-Assisted Degradation.
    Luo G; Lin X; Vega-Medina A; Xiao M; Li G; Wei H; Velázquez-Martínez CA; Xiang H
    J Med Chem; 2021 Dec; 64(23):17098-17114. PubMed ID: 34812040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ROTACs leverage signaling-incompetent R-spondin for targeted protein degradation.
    Sun R; Meng Z; Lee H; Offringa R; Niehrs C
    Cell Chem Biol; 2023 Jul; 30(7):739-752.e8. PubMed ID: 37321224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BTF3 promotes proliferation and glycolysis in hepatocellular carcinoma by regulating GLUT1.
    Wang P; Sun J; Sun C; Zhao H; Zhang Y; Chen J
    Cancer Biol Ther; 2023 Dec; 24(1):2225884. PubMed ID: 37382415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expansion of targeted degradation by Gilteritinib-Warheaded PROTACs to ALK fusion proteins.
    Yokoo H; Tsuji G; Inoue T; Naito M; Demizu Y; Ohoka N
    Bioorg Chem; 2024 Apr; 145():107204. PubMed ID: 38377822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A cyclic peptide-based PROTAC induces intracellular degradation of palmitoyltransferase and potently decreases PD-L1 expression in human cervical cancer cells.
    Shi YY; Dong DR; Fan G; Dai MY; Liu M
    Front Immunol; 2023; 14():1237964. PubMed ID: 37849747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stapled peptide PROTAC induced significantly greater anti-PD-L1 effects than inhibitor in human cervical cancer cells.
    Shi YY; Wang AJ; Liu XL; Dai MY; Cai HB
    Front Immunol; 2023; 14():1193222. PubMed ID: 37325638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ albumin-binding and esterase-specifically cleaved BRD4-degrading PROTAC for targeted cancer therapy.
    Cho H; Jeon SI; Shim MK; Ahn CH; Kim K
    Biomaterials; 2023 Apr; 295():122038. PubMed ID: 36787659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery of novel resorcinol diphenyl ether-based PROTAC-like molecules as dual inhibitors and degraders of PD-L1.
    Cheng B; Ren Y; Cao H; Chen J
    Eur J Med Chem; 2020 Aug; 199():112377. PubMed ID: 32388281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel peptide, 9R-P201, strongly inhibits the viability, proliferation and migration of liver cancer HepG2 cells and induces apoptosis by down-regulation of FoxM1 expression.
    Bi Z; Liu W; Ding R; Wu Y; Dou R; Zhang W; Yuan X; Liu X; Xiong L; Guo Z; Mao C
    Eur J Pharmacol; 2017 Feb; 796():175-189. PubMed ID: 28012972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ILT4 inhibition prevents TAM- and dysfunctional T cell-mediated immunosuppression and enhances the efficacy of anti-PD-L1 therapy in NSCLC with EGFR activation.
    Chen X; Gao A; Zhang F; Yang Z; Wang S; Fang Y; Li J; Wang J; Shi W; Wang L; Zheng Y; Sun Y
    Theranostics; 2021; 11(7):3392-3416. PubMed ID: 33537094
    [No Abstract]   [Full Text] [Related]  

  • 18. Discovery of E3 Ligase Ligands for Target Protein Degradation.
    Lee J; Lee Y; Jung YM; Park JH; Yoo HS; Park J
    Molecules; 2022 Oct; 27(19):. PubMed ID: 36235052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PTMs of PD-1/PD-L1 and PROTACs application for improving cancer immunotherapy.
    Ren X; Wang L; Liu L; Liu J
    Front Immunol; 2024; 15():1392546. PubMed ID: 38638430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted Degradation of PD-L1 and Activation of the STING Pathway by Carbon-Dot-Based PROTACs for Cancer Immunotherapy.
    Su W; Tan M; Wang Z; Zhang J; Huang W; Song H; Wang X; Ran H; Gao Y; Nie G; Wang H
    Angew Chem Int Ed Engl; 2023 Mar; 62(11):e202218128. PubMed ID: 36647763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.