BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36171656)

  • 1. Structural Insight into Evolution of the Quinone Binding Site in Complex II.
    Maklashina E
    Biochemistry (Mosc); 2022 Aug; 87(8):752-761. PubMed ID: 36171656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Essentiality of succinate dehydrogenase in Mycobacterium smegmatis and its role in the generation of the membrane potential under hypoxia.
    Pecsi I; Hards K; Ekanayaka N; Berney M; Hartman T; Jacobs WR; Cook GM
    mBio; 2014 Aug; 5(4):. PubMed ID: 25118234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modular structure of complex II: An evolutionary perspective.
    Karavaeva V; Sousa FL
    Biochim Biophys Acta Bioenerg; 2023 Jan; 1864(1):148916. PubMed ID: 36084748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of catalytic activity and inhibitors of quinone reactions of succinate dehydrogenase (Succinate-ubiquinone oxidoreductase) and fumarate reductase (Menaquinol-fumarate oxidoreductase) from Escherichia coli.
    Maklashina E; Cecchini G
    Arch Biochem Biophys; 1999 Sep; 369(2):223-32. PubMed ID: 10486141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How an assembly factor enhances covalent FAD attachment to the flavoprotein subunit of complex II.
    Maklashina E; Iverson TM; Cecchini G
    J Biol Chem; 2022 Oct; 298(10):102472. PubMed ID: 36089066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitor probes of the quinone binding sites of mammalian complex II and Escherichia coli fumarate reductase.
    Yankovskaya V; Sablin SO; Ramsay RR; Singer TP; Ackrell BA; Cecchini G; Miyoshi H
    J Biol Chem; 1996 Aug; 271(35):21020-4. PubMed ID: 8702865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactivity of the Bacillus subtilis succinate dehydrogenase complex with quinones.
    Lemma E; Hägerhäll C; Geisler V; Brandt U; von Jagow G; Kröger A
    Biochim Biophys Acta; 1991 Sep; 1059(3):281-5. PubMed ID: 1655027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Succinate: quinone oxidoreductases: new insights from X-ray crystal structures.
    Lancaster CR; Kröger A
    Biochim Biophys Acta; 2000 Aug; 1459(2-3):422-31. PubMed ID: 11004459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The distal heme center in Bacillus subtilis succinate:quinone reductase is crucial for electron transfer to menaquinone.
    Matsson M; Tolstoy D; Aasa R; Hederstedt L
    Biochemistry; 2000 Jul; 39(29):8617-24. PubMed ID: 10913269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A conserved lysine residue controls iron-sulfur cluster redox chemistry in Escherichia coli fumarate reductase.
    Cheng VW; Tran QM; Boroumand N; Rothery RA; Maklashina E; Cecchini G; Weiner JH
    Biochim Biophys Acta; 2013 Oct; 1827(10):1141-7. PubMed ID: 23711795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and computational analysis of the quinone-binding site of complex II (succinate-ubiquinone oxidoreductase): a mechanism of electron transfer and proton conduction during ubiquinone reduction.
    Horsefield R; Yankovskaya V; Sexton G; Whittingham W; Shiomi K; Omura S; Byrne B; Cecchini G; Iwata S
    J Biol Chem; 2006 Mar; 281(11):7309-16. PubMed ID: 16407191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of substituents of the benzoquinone ring on electron-transfer activities of ubiquinone derivatives.
    Gu LQ; Yu L; Yu CA
    Biochim Biophys Acta; 1990 Feb; 1015(3):482-92. PubMed ID: 2154255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of fumarate reductase from Wolinella succinogenes at 2.2 A resolution.
    Lancaster CR; Kröger A; Auer M; Michel H
    Nature; 1999 Nov; 402(6760):377-85. PubMed ID: 10586875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aerobic inactivation of fumarate reductase from Escherichia coli by mutation of the [3Fe-4S]-quinone binding domain.
    Cecchini G; Sices H; Schröder I; Gunsalus RP
    J Bacteriol; 1995 Aug; 177(16):4587-92. PubMed ID: 7642483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The quinone-binding and catalytic site of complex II.
    Maklashina E; Cecchini G
    Biochim Biophys Acta; 2010 Dec; 1797(12):1877-82. PubMed ID: 20175986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental evidence for proton motive force-dependent catalysis by the diheme-containing succinate:menaquinone oxidoreductase from the Gram-positive bacterium Bacillus licheniformis.
    Madej MG; Nasiri HR; Hilgendorff NS; Schwalbe H; Unden G; Lancaster CR
    Biochemistry; 2006 Dec; 45(50):15049-55. PubMed ID: 17154542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is a Q-cycle-like mechanism operative in dihaemic succinate:quinone and quinol:fumarate oxidoreductases?
    Pereira MM; Teixeira M
    FEBS Lett; 2003 May; 543(1-3):1-4. PubMed ID: 12753894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retention of heme in axial ligand mutants of succinate-ubiquinone xxidoreductase (complex II) from Escherichia coli.
    Maklashina E; Rothery RA; Weiner JH; Cecchini G
    J Biol Chem; 2001 Jun; 276(22):18968-76. PubMed ID: 11259408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Saccharomyces cerevisiae succinate-ubiquinone oxidoreductase. Identification of Sdh3p amino acid residues involved in ubiquinone binding.
    Oyedotun KS; Lemire BD
    J Biol Chem; 1999 Aug; 274(34):23956-62. PubMed ID: 10446163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fumarate reductase activity of bovine heart succinate-ubiquinone reductase. New assay system and overall properties of the reaction.
    Grivennikova VG; Gavrikova EV; Timoshin AA; Vinogradov AD
    Biochim Biophys Acta; 1993 Jan; 1140(3):282-92. PubMed ID: 8417779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.