These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
477 related articles for article (PubMed ID: 36172153)
1. Invasive ductal breast cancer molecular subtype prediction by MRI radiomic and clinical features based on machine learning. Sheng W; Xia S; Wang Y; Yan L; Ke S; Mellisa E; Gong F; Zheng Y; Tang T Front Oncol; 2022; 12():964605. PubMed ID: 36172153 [TBL] [Abstract][Full Text] [Related]
2. Breast Cancer Molecular Subtype Prediction by Mammographic Radiomic Features. Ma W; Zhao Y; Ji Y; Guo X; Jian X; Liu P; Wu S Acad Radiol; 2019 Feb; 26(2):196-201. PubMed ID: 29526548 [TBL] [Abstract][Full Text] [Related]
3. Multi-Parametric MRI-Based Radiomics Models for Predicting Molecular Subtype and Androgen Receptor Expression in Breast Cancer. Huang Y; Wei L; Hu Y; Shao N; Lin Y; He S; Shi H; Zhang X; Lin Y Front Oncol; 2021; 11():706733. PubMed ID: 34490107 [TBL] [Abstract][Full Text] [Related]
4. Intra- and Peritumoral Radiomics Model Based on Early DCE-MRI for Preoperative Prediction of Molecular Subtypes in Invasive Ductal Breast Carcinoma: A Multitask Machine Learning Study. Zhang S; Wang X; Yang Z; Zhu Y; Zhao N; Li Y; He J; Sun H; Xie Z Front Oncol; 2022; 12():905551. PubMed ID: 35814460 [TBL] [Abstract][Full Text] [Related]
5. Comparison of Dynamic Contrast-Enhanced MRI and Non-Mono-Exponential Model-Based Diffusion-Weighted Imaging for the Prediction of Prognostic Biomarkers and Molecular Subtypes of Breast Cancer Based on Radiomics. Zhang L; Zhou XX; Liu L; Liu AY; Zhao WJ; Zhang HX; Zhu YM; Kuai ZX J Magn Reson Imaging; 2023 Nov; 58(5):1590-1602. PubMed ID: 36661350 [TBL] [Abstract][Full Text] [Related]
6. Breast Cancer Surrogate Subtype Classification Using Pretreatment Multi-Phase Dynamic Contrast-Enhanced Magnetic Resonance Imaging Radiomics: A Retrospective Single-Center Study. Kovačević L; Štajduhar A; Stemberger K; Korša L; Marušić Z; Prutki M J Pers Med; 2023 Jul; 13(7):. PubMed ID: 37511763 [TBL] [Abstract][Full Text] [Related]
7. Prediction Breast Molecular Typing of Invasive Ductal Carcinoma Based on Dynamic Contrast Enhancement Magnetic Resonance Imaging Radiomics Characteristics: A Feasibility Study. Xu A; Chu X; Zhang S; Zheng J; Shi D; Lv S; Li F; Weng X Front Oncol; 2022; 12():799232. PubMed ID: 35664741 [TBL] [Abstract][Full Text] [Related]
8. Breast cancer Ki67 expression prediction by DCE-MRI radiomics features. Ma W; Ji Y; Qi L; Guo X; Jian X; Liu P Clin Radiol; 2018 Oct; 73(10):909.e1-909.e5. PubMed ID: 29970244 [TBL] [Abstract][Full Text] [Related]
9. Machine learning models for differential diagnosing HER2-low breast cancer: A radiomics approach. Chen X; Li M; Su D Medicine (Baltimore); 2024 Aug; 103(33):e39343. PubMed ID: 39151526 [TBL] [Abstract][Full Text] [Related]
10. Comparison of radiomics-based machine-learning classifiers for the pretreatment prediction of pathologic complete response to neoadjuvant therapy in breast cancer. Li X; Li C; Wang H; Jiang L; Chen M PeerJ; 2024; 12():e17683. PubMed ID: 39026540 [TBL] [Abstract][Full Text] [Related]
11. Radiomic signatures with contrast-enhanced magnetic resonance imaging for the assessment of breast cancer receptor status and molecular subtypes: initial results. Leithner D; Horvat JV; Marino MA; Bernard-Davila B; Jochelson MS; Ochoa-Albiztegui RE; Martinez DF; Morris EA; Thakur S; Pinker K Breast Cancer Res; 2019 Sep; 21(1):106. PubMed ID: 31514736 [TBL] [Abstract][Full Text] [Related]
12. Radiomic machine learning for predicting prognostic biomarkers and molecular subtypes of breast cancer using tumor heterogeneity and angiogenesis properties on MRI. Lee JY; Lee KS; Seo BK; Cho KR; Woo OH; Song SE; Kim EK; Lee HY; Kim JS; Cha J Eur Radiol; 2022 Jan; 32(1):650-660. PubMed ID: 34226990 [TBL] [Abstract][Full Text] [Related]
13. Impact of Machine Learning With Multiparametric Magnetic Resonance Imaging of the Breast for Early Prediction of Response to Neoadjuvant Chemotherapy and Survival Outcomes in Breast Cancer Patients. Tahmassebi A; Wengert GJ; Helbich TH; Bago-Horvath Z; Alaei S; Bartsch R; Dubsky P; Baltzer P; Clauser P; Kapetas P; Morris EA; Meyer-Baese A; Pinker K Invest Radiol; 2019 Feb; 54(2):110-117. PubMed ID: 30358693 [TBL] [Abstract][Full Text] [Related]
14. Predicting disease recurrence in breast cancer patients using machine learning models with clinical and radiomic characteristics: a retrospective study. Azeroual S; Ben-Bouazza FE; Naqi A; Sebihi R J Egypt Natl Canc Inst; 2024 Jun; 36(1):20. PubMed ID: 38853190 [TBL] [Abstract][Full Text] [Related]
15. Radiomic Signatures Derived from Diffusion-Weighted Imaging for the Assessment of Breast Cancer Receptor Status and Molecular Subtypes. Leithner D; Bernard-Davila B; Martinez DF; Horvat JV; Jochelson MS; Marino MA; Avendano D; Ochoa-Albiztegui RE; Sutton EJ; Morris EA; Thakur SB; Pinker K Mol Imaging Biol; 2020 Apr; 22(2):453-461. PubMed ID: 31209778 [TBL] [Abstract][Full Text] [Related]
16. Contrast-Enhanced Mammography Radiomics Analysis for Preoperative Prediction of Breast Cancer Molecular Subtypes. Zhu S; Wang S; Guo S; Wu R; Zhang J; Kong M; Pan L; Gu Y; Yu S Acad Radiol; 2024 Jun; 31(6):2228-2238. PubMed ID: 38142176 [TBL] [Abstract][Full Text] [Related]
17. Radiomics Analysis of Contrast-Enhanced Breast MRI for Optimized Modelling of Virtual Prognostic Biomarkers in Breast Cancer. Polat DS; Xi Y; Hulsey K; Lewis M; Dogan BE Eur J Breast Health; 2024 Apr; 20(2):122-128. PubMed ID: 38571687 [TBL] [Abstract][Full Text] [Related]
18. Value of the Application of CE-MRI Radiomics and Machine Learning in Preoperative Prediction of Sentinel Lymph Node Metastasis in Breast Cancer. Zhu Y; Yang L; Shen H Front Oncol; 2021; 11():757111. PubMed ID: 34868967 [TBL] [Abstract][Full Text] [Related]
19. Dynamic contrast-enhanced magnetic resonance imaging radiomics analysis based on intratumoral subregions for predicting luminal and nonluminal breast cancer. Feng S; Yin J Quant Imaging Med Surg; 2023 Oct; 13(10):6735-6749. PubMed ID: 37869317 [TBL] [Abstract][Full Text] [Related]
20. DCE-MRI Radiomics Analysis in Differentiating Luminal A and Luminal B Breast Cancer Molecular Subtypes. Lafcı O; Celepli P; Seher Öztekin P; Koşar PN Acad Radiol; 2023 Jan; 30(1):22-29. PubMed ID: 35595629 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]