BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 36172552)

  • 1. Flexible and high quality plant growth prediction with limited data.
    Meng Y; Xu M; Yoon S; Jeong Y; Park DS
    Front Plant Sci; 2022; 13():989304. PubMed ID: 36172552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant Disease Detection Using Generated Leaves Based on DoubleGAN.
    Zhao Y; Chen Z; Gao X; Song W; Xiong Q; Hu J; Zhang Z
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(3):1817-1826. PubMed ID: 33534712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data augmentation with Mixup: Enhancing performance of a functional neuroimaging-based prognostic deep learning classifier in recent onset psychosis.
    Smucny J; Shi G; Lesh TA; Carter CS; Davidson I
    Neuroimage Clin; 2022; 36():103214. PubMed ID: 36183611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-content image generation for drug discovery using generative adversarial networks.
    Hussain S; Anees A; Das A; Nguyen BP; Marzuki M; Lin S; Wright G; Singhal A
    Neural Netw; 2020 Dec; 132():353-363. PubMed ID: 32977280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Style-Consistent Image Translation: A Novel Data Augmentation Paradigm to Improve Plant Disease Recognition.
    Xu M; Yoon S; Fuentes A; Yang J; Park DS
    Front Plant Sci; 2021; 12():773142. PubMed ID: 35197989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generative Adversarial Network for Medical Images (MI-GAN).
    Iqbal T; Ali H
    J Med Syst; 2018 Oct; 42(11):231. PubMed ID: 30315368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SpeckleGAN: a generative adversarial network with an adaptive speckle layer to augment limited training data for ultrasound image processing.
    Bargsten L; Schlaefer A
    Int J Comput Assist Radiol Surg; 2020 Sep; 15(9):1427-1436. PubMed ID: 32556953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Image generation by GAN and style transfer for agar plate image segmentation.
    Andreini P; Bonechi S; Bianchini M; Mecocci A; Scarselli F
    Comput Methods Programs Biomed; 2020 Feb; 184():105268. PubMed ID: 31891902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MSFF-CDCGAN: A novel method to predict RNA secondary structure based on Generative Adversarial Network.
    Yuan S; Gong Y; Wang G; Zhang B; Liu Y; Zhang H
    Methods; 2022 Aug; 204():368-375. PubMed ID: 35490852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-equivalent images and pixels: Confidence-aware resampling with meta-learning mixup for polyp segmentation.
    Guo X; Chen Z; Liu J; Yuan Y
    Med Image Anal; 2022 May; 78():102394. PubMed ID: 35219939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep-learning prediction of amyloid deposition from early-phase amyloid positron emission tomography imaging.
    Komori S; Cross DJ; Mills M; Ouchi Y; Nishizawa S; Okada H; Norikane T; Thientunyakit T; Anzai Y; Minoshima S
    Ann Nucl Med; 2022 Oct; 36(10):913-921. PubMed ID: 35913591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A material decomposition method for dual-energy CT via dual interactive Wasserstein generative adversarial networks.
    Shi Z; Li H; Cao Q; Wang Z; Cheng M
    Med Phys; 2021 Jun; 48(6):2891-2905. PubMed ID: 33704786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of Deep Learning to Develop and Analyze Computational Hematoxylin and Eosin Staining of Prostate Core Biopsy Images for Tumor Diagnosis.
    Rana A; Lowe A; Lithgow M; Horback K; Janovitz T; Da Silva A; Tsai H; Shanmugam V; Bayat A; Shah P
    JAMA Netw Open; 2020 May; 3(5):e205111. PubMed ID: 32432709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving CBCT quality to CT level using deep learning with generative adversarial network.
    Zhang Y; Yue N; Su MY; Liu B; Ding Y; Zhou Y; Wang H; Kuang Y; Nie K
    Med Phys; 2021 Jun; 48(6):2816-2826. PubMed ID: 33259647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Learning for Neuroimaging Segmentation with a Novel Data Augmentation Strategy.
    Wu W; Lu Y; Mane R; Guan C
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1516-1519. PubMed ID: 33018279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks.
    Sandfort V; Yan K; Pickhardt PJ; Summers RM
    Sci Rep; 2019 Nov; 9(1):16884. PubMed ID: 31729403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain Tumor Classification Using a Combination of Variational Autoencoders and Generative Adversarial Networks.
    Ahmad B; Sun J; You Q; Palade V; Mao Z
    Biomedicines; 2022 Jan; 10(2):. PubMed ID: 35203433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep convolutional generative adversarial network for Alzheimer's disease classification using positron emission tomography (PET) and synthetic data augmentation.
    Sajjad M; Ramzan F; Khan MUG; Rehman A; Kolivand M; Fati SM; Bahaj SA
    Microsc Res Tech; 2021 Dec; 84(12):3023-3034. PubMed ID: 34245203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small facial image dataset augmentation using conditional GANs based on incomplete edge feature input.
    Hung SK; Gan JQ
    PeerJ Comput Sci; 2021; 7():e760. PubMed ID: 34901424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generating Full-Field Digital Mammogram From Digitized Screen-Film Mammogram for Breast Cancer Screening With High-Resolution Generative Adversarial Network.
    Zhou Y; Wei J; Wu D; Zhang Y
    Front Oncol; 2022; 12():868257. PubMed ID: 35574397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.