These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 36172859)

  • 1. Medium dependent optical response in ultra-fine plasmonic nanoparticles.
    Sørensen LK; Khrennikov DE; Gerasimov VS; Ershov AE; Polyutov SP; Karpov SV; Ågren H
    Phys Chem Chem Phys; 2022 Oct; 24(39):24062-24075. PubMed ID: 36172859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noble metal nanoparticle pairs: effect of medium for enhanced nanosensing.
    Jain PK; El-Sayed MA
    Nano Lett; 2008 Dec; 8(12):4347-52. PubMed ID: 19367968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maximizing the Surface Sensitivity of LSPR Biosensors through Plasmon Coupling-Interparticle Gap Optimization for Dimers Using Computational Simulations.
    Bonyár A
    Biosensors (Basel); 2021 Dec; 11(12):. PubMed ID: 34940284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoparticle plasmonics for 2D-photovoltaics: mechanisms, optimization, and limits.
    Hägglund C; Kasemo B
    Opt Express; 2009 Jul; 17(14):11944-57. PubMed ID: 19582109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic refractive index sensing using strongly coupled metal nanoantennas: nonlocal limitations.
    Wang H
    Sci Rep; 2018 Jun; 8(1):9589. PubMed ID: 29941992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications.
    Danilov A; Tselikov G; Wu F; Kravets VG; Ozerov I; Bedu F; Grigorenko AN; Kabashin AV
    Biosens Bioelectron; 2018 May; 104():102-112. PubMed ID: 29331424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment.
    Miller MM; Lazarides AA
    J Phys Chem B; 2005 Nov; 109(46):21556-65. PubMed ID: 16853799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reducing the loss of electric field enhancement for plasmonic core-shell nanoparticle dimers by high refractive index dielectric coating.
    Zhai Y; Deng L; Chen Y; Wang N; Huang Y
    J Phys Condens Matter; 2020 Mar; 32(10):105001. PubMed ID: 31658445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers.
    Csaki A; Jahn F; Latka I; Henkel T; Malsch D; Schneider T; Schröder K; Schuster K; Schwuchow A; Spittel R; Zopf D; Fritzsche W
    Small; 2010 Nov; 6(22):2584-9. PubMed ID: 20957761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomistic electrodynamics simulations of bare and ligand-coated nanoparticles in the quantum size regime.
    Chen X; Moore JE; Zekarias M; Jensen L
    Nat Commun; 2015 Nov; 6():8921. PubMed ID: 26555179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of the Optical and Thermoplasmonics Properties of Gold Nanoparticle Embedded in Al
    Akouibaa A; Masrour R; Jabar A; Benhamou M; Ouarch M; Derouiche A
    Plasmonics; 2022; 17(3):1157-1169. PubMed ID: 35228839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infrared Perfect Ultra-narrow Band Absorber as Plasmonic Sensor.
    Wu D; Liu Y; Li R; Chen L; Ma R; Liu C; Ye H
    Nanoscale Res Lett; 2016 Dec; 11(1):483. PubMed ID: 27807825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning of spectral and angular distribution of scattering from single gold nanoparticles by subwavelength interference layers.
    Wirth J; Garwe F; Bergmann J; Paa W; Csaki A; Stranik O; Fritzsche W
    Nano Lett; 2014 Feb; 14(2):570-7. PubMed ID: 24417568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical sensing and determination of complex reflection coefficients of plasmonic structures using transmission interferometric plasmonic sensor.
    Sannomiya T; Balmer TE; Hafner C; Heuberger M; Vörös J
    Rev Sci Instrum; 2010 May; 81(5):053102. PubMed ID: 20515119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the CTAB surfactant layer on optical properties of single metallic nanospheres.
    Movsesyan A; Marguet S; Muravitskaya A; Béal J; Adam PM; Baudrion AL
    J Opt Soc Am A Opt Image Sci Vis; 2019 Nov; 36(11):C78-C84. PubMed ID: 31873698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective Optical Properties of Inhomogeneously Distributed Nanoobjects in Strong Field Gradients of Nanoplasmonic Sensors.
    Czajkowski KM; Świtlik D; Langhammer C; Antosiewicz TJ
    Plasmonics; 2018; 13(6):2423-2434. PubMed ID: 30595678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomistic description of plasmonic generation in alloys and core shell nanoparticles.
    Sørensen LK; Utyushev AD; Zakomirnyi VI; Ågren H
    Phys Chem Chem Phys; 2021 Jan; 23(1):173-185. PubMed ID: 33313633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode.
    Tsai CY; Lin JW; Wu CY; Lin PT; Lu TW; Lee PT
    Nano Lett; 2012 Mar; 12(3):1648-54. PubMed ID: 22321005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.