These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36173040)

  • 1. Preparation of Nitrogen Doped Biochar-Based Iron Catalyst for Enhancing Gasoline-Range Hydrocarbons Production.
    Bai J; Qin C; Xu Y; Xu D; Ding M
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45516-45525. PubMed ID: 36173040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Na-modified Fe@C core-shell catalyst for the enhanced production of gasoline-range hydrocarbons
    Ma G; Xu Y; Wang J; Bai J; Du Y; Zhang J; Ding M
    RSC Adv; 2020 Mar; 10(18):10723-10730. PubMed ID: 35492905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosugarcane-based carbon support for high-performance iron-based Fischer-Tropsch synthesis.
    Bai J; Qin C; Xu Y; Du Y; Ma G; Ding M
    iScience; 2021 Jul; 24(7):102715. PubMed ID: 34258552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Confined small-sized cobalt catalysts stimulate carbon-chain growth reversely by modifying ASF law of Fischer-Tropsch synthesis.
    Cheng Q; Tian Y; Lyu S; Zhao N; Ma K; Ding T; Jiang Z; Wang L; Zhang J; Zheng L; Gao F; Dong L; Tsubaki N; Li X
    Nat Commun; 2018 Aug; 9(1):3250. PubMed ID: 30108226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective transformation of syngas into gasoline-range hydrocarbons over mesoporous H-ZSM-5-supported cobalt nanoparticles.
    Cheng K; Zhang L; Kang J; Peng X; Zhang Q; Wang Y
    Chemistry; 2015 Jan; 21(5):1928-37. PubMed ID: 25424473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of graphitic carbon modification on the catalytic performance of Fe@SiO
    Ni Z; Qin H; Kang S; Bai J; Wang Z; Li Y; Zheng Z; Li X
    J Colloid Interface Sci; 2018 Apr; 516():16-22. PubMed ID: 29408102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fischer-Tropsch catalysts for the production of hydrocarbon fuels with high selectivity.
    Zhang Q; Cheng K; Kang J; Deng W; Wang Y
    ChemSusChem; 2014 May; 7(5):1251-64. PubMed ID: 24339240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene Nanoflake- and Carbon Nanotube-Supported Iron-Potassium 3D-Catalysts for Hydrocarbon Synthesis from Syngas.
    Chernyak SA; Stolbov DN; Maslakov KI; Kazantsev RV; Eliseev OL; Moskovskikh DO; Savilov SV
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and characterization of iron-nitrogen-doped biochar catalysts for organic pollutant removal and hexavalent chromium reduction.
    Yao Y; Liu X; Hu H; Tang Y; Hu H; Ma Z; Wang S
    J Colloid Interface Sci; 2022 Mar; 610():334-346. PubMed ID: 34923271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of low carbon olefins on a core-shell K-Fe
    Liu Y; Shao W; Zheng Y; Zhang C; Zhou W; Zhang X; Liu Y
    RSC Adv; 2020 Jul; 10(44):26451-26459. PubMed ID: 35519778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxide-Zeolite-Based Composite Catalyst Concept That Enables Syngas Chemistry beyond Fischer-Tropsch Synthesis.
    Pan X; Jiao F; Miao D; Bao X
    Chem Rev; 2021 Jun; 121(11):6588-6609. PubMed ID: 34032417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation between Fischer-Tropsch catalytic activity and composition of catalysts.
    Ali S; Mohd Zabidi NA; Subbarao D
    Chem Cent J; 2011 Nov; 5():68. PubMed ID: 22047220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An optimal Fe-C coordination ensemble for hydrocarbon chain growth: a full Fischer-Tropsch synthesis mechanism from machine learning.
    Liu QY; Chen D; Shang C; Liu ZP
    Chem Sci; 2023 Sep; 14(35):9461-9475. PubMed ID: 37712046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon-based catalysts for Fischer-Tropsch synthesis.
    Chen Y; Wei J; Duyar MS; Ordomsky VV; Khodakov AY; Liu J
    Chem Soc Rev; 2021 Mar; 50(4):2337-2366. PubMed ID: 33393529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of water and n-hexane on pristine and oxidized carbon nanotube supports of cobalt-based Fischer-Tropsch catalysts.
    Chernyak SA; Strokova NE; Fedorova ES; Ivanov AS; Maslakov KI; Savilov SV; Lunin VV
    Phys Chem Chem Phys; 2019 Jun; 21(24):13234-13240. PubMed ID: 31180100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst.
    Chen W; Fan Z; Pan X; Bao X
    J Am Chem Soc; 2008 Jul; 130(29):9414-9. PubMed ID: 18576652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Dispersed CoO Embedded on Graphitized Ordered Mesoporous Carbon as an Effective Catalyst for Selective Fischer-Tropsch Synthesis of C
    Bai J; Song M; Pang J; Wang L; Zhang J; Jiang X; Ni Z; Wang Z; Zhou Q
    Front Chem; 2022; 10():849505. PubMed ID: 35223776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cobalt Carbide Nanocatalysts for Efficient Syngas Conversion to Value-Added Chemicals with High Selectivity.
    Lin T; Yu F; An Y; Qin T; Li L; Gong K; Zhong L; Sun Y
    Acc Chem Res; 2021 Apr; 54(8):1961-1971. PubMed ID: 33599477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alumina Coated Silica Nanosprings (NS) Support Based Cobalt Catalysts for Liquid Hydrocarbon Fuel Production From Syngas.
    Alayat A; Echeverria E; Sotoudehniakarani F; Mcllroy DN; McDonald AG
    Materials (Basel); 2019 Jun; 12(11):. PubMed ID: 31167375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the mechanism of carbon chain growth on zeolite-based Fischer-Tropsch Co/Y catalysts.
    Dong X; Li J; Ma T; Wang L
    Phys Chem Chem Phys; 2022 Jun; 24(24):14751-14762. PubMed ID: 35678305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.