These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 36173159)

  • 1. Structure of lactate oxidase from Enterococcus hirae revealed new aspects of active site loop function: Product-inhibition mechanism and oxygen gatekeeper.
    Hiraka K; Yoshida H; Tsugawa W; Asano R; La Belle JT; Ikebukuro K; Sode K
    Protein Sci; 2022 Oct; 31(10):e4434. PubMed ID: 36173159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Speeding up the product release: a second-sphere contribution from Tyr191 to the reactivity of L-lactate oxidase revealed in crystallographic and kinetic studies of site-directed variants.
    Stoisser T; Klimacek M; Wilson DK; Nidetzky B
    FEBS J; 2015 Nov; 282(21):4130-40. PubMed ID: 26260739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and role for active site lid of lactate monooxygenase from Mycobacterium smegmatis.
    Kean KM; Karplus PA
    Protein Sci; 2019 Jan; 28(1):135-149. PubMed ID: 30207005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. X-ray structures of Aerococcus viridans lactate oxidase and its complex with D-lactate at pH 4.5 show an alpha-hydroxyacid oxidation mechanism.
    Furuichi M; Suzuki N; Dhakshnamoorhty B; Minagawa H; Yamagishi R; Watanabe Y; Goto Y; Kaneko H; Yoshida Y; Yagi H; Waga I; Kumar PK; Mizuno H
    J Mol Biol; 2008 Apr; 378(2):436-46. PubMed ID: 18367206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The 2.1 A structure of Aerococcus viridans L-lactate oxidase (LOX).
    Leiros I; Wang E; Rasmussen T; Oksanen E; Repo H; Petersen SB; Heikinheimo P; Hough E
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 Dec; 62(Pt 12):1185-90. PubMed ID: 17142893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystallographic study on the interaction of L-lactate oxidase with pyruvate at 1.9 Angstrom resolution.
    Li SJ; Umena Y; Yorita K; Matsuoka T; Kita A; Fukui K; Morimoto Y
    Biochem Biophys Res Commun; 2007 Jul; 358(4):1002-7. PubMed ID: 17517371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 2-thioriboflavin 5'-phosphate (2-thio-FMN) lactate oxidase.
    Choong YS; Massey V
    Eur J Biochem; 1983 Apr; 131(3):501-8. PubMed ID: 6840063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Ala95-to-Gly substitution in Aerococcus viridans l-lactate oxidase revisited - structural consequences at the catalytic site and effect on reactivity with O2 and other electron acceptors.
    Stoisser T; Rainer D; Leitgeb S; Wilson DK; Nidetzky B
    FEBS J; 2015 Feb; 282(3):562-78. PubMed ID: 25423902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FMN-dependent oligomerization of putative lactate oxidase from Pediococcus acidilactici.
    Ashok Y; Maksimainen MM; Kallio T; Kilpeläinen P; Lehtiö L
    PLoS One; 2020; 15(2):e0223870. PubMed ID: 32092083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational flexibility related to enzyme activity: evidence for a dynamic active-site gatekeeper function of Tyr(215) in Aerococcus viridans lactate oxidase.
    Stoisser T; Brunsteiner M; Wilson DK; Nidetzky B
    Sci Rep; 2016 Jun; 6():27892. PubMed ID: 27302031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-directed mutagenesis of glycine 99 to alanine in L-lactate monooxygenase from Mycobacterium smegmatis.
    Sun W; Williams CH; Massey V
    J Biol Chem; 1996 Jul; 271(29):17226-33. PubMed ID: 8663383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The catalytic role of tyrosine 254 in flavocytochrome b2 (L-lactate dehydrogenase from baker's yeast). Comparison between the Y254F and Y254L mutant proteins.
    Gondry M; Dubois J; Terrier M; Lederer F
    Eur J Biochem; 2001 Sep; 268(18):4918-27. PubMed ID: 11559361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of two arginine residues in lactate oxidase with the enzyme flavin: conversion of FMN to 8-formyl-FMN.
    Yorita K; Matsuoka T; Misaki H; Massey V
    Proc Natl Acad Sci U S A; 2000 Nov; 97(24):13039-44. PubMed ID: 11078532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. L-lactate oxidase and L-lactate monooxygenase: mechanistic variations on a common structural theme.
    Maeda-Yorita K; Aki K; Sagai H; Misaki H; Massey V
    Biochimie; 1995; 77(7-8):631-42. PubMed ID: 8589073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Minimizing the effects of oxygen interference on l-lactate sensors by a single amino acid mutation in Aerococcus viridansl-lactate oxidase.
    Hiraka K; Kojima K; Lin CE; Tsugawa W; Asano R; La Belle JT; Sode K
    Biosens Bioelectron; 2018 Apr; 103():163-170. PubMed ID: 29279290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilization of C4a-hydroperoxyflavin in a two-component flavin-dependent monooxygenase is achieved through interactions at flavin N5 and C4a atoms.
    Thotsaporn K; Chenprakhon P; Sucharitakul J; Mattevi A; Chaiyen P
    J Biol Chem; 2011 Aug; 286(32):28170-80. PubMed ID: 21680741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational engineering of Aerococcus viridansl-lactate oxidase for the mediator modification to achieve quasi-direct electron transfer type lactate sensor.
    Hiraka K; Kojima K; Tsugawa W; Asano R; Ikebukuro K; Sode K
    Biosens Bioelectron; 2020 Mar; 151():111974. PubMed ID: 31999581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic interactions in the l-lactate oxidase active site facilitate substrate binding at pH4.5.
    Furubayashi N; Inaka K; Kamo M; Umena Y; Matsuoka T; Morimoto Y
    Biochem Biophys Res Commun; 2021 Sep; 568():131-135. PubMed ID: 34214876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conversion of L-lactate oxidase to a long chain alpha-hydroxyacid oxidase by site-directed mutagenesis of alanine 95 to glycine.
    Yorita K; Aki K; Ohkuma-Soyejima T; Kokubo T; Misaki H; Massey V
    J Biol Chem; 1996 Nov; 271(45):28300-5. PubMed ID: 8910450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.