These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 36173181)

  • 1. 3D-Printed Parahydrophobic Functional Textile with a Hierarchical Nanomicroscale Structure.
    Wang L; Shi B; Zhao H; Qi X; Chen J; Li J; Shang Y; Fu KK; Zhang X; Tian M; Qu L
    ACS Nano; 2022 Oct; 16(10):16645-16654. PubMed ID: 36173181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-Functional Superhydrophobic Textiles with Asymmetric Roll-Down/Pinned States for Water Droplet Transportation and Oil-Water Separation.
    Su X; Li H; Lai X; Zhang L; Liao X; Wang J; Chen Z; He J; Zeng X
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):4213-4221. PubMed ID: 29323869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multidimensional Hierarchical Fabric-Based Supercapacitor with Bionic Fiber Microarrays for Smart Wearable Electronic Textiles.
    Li Z; Ma Y; Wang L; Du X; Zhu S; Zhang X; Qu L; Tian M
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):46278-46285. PubMed ID: 31713408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchically Structured, All-Aqueous-Coated Hydrophobic Surfaces with pH-Selective Droplet Transfer Capability.
    Brito J; Asawa K; Marin A; Andrianov AK; Choi CH; Sukhishvili SA
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):26225-26237. PubMed ID: 35611942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oil adsorbing and transporting surfaces: a simulative determination of parameters for bionic functional textiles.
    Wagner J; Akdere M; Gürbüz K; Beek L; Klopp K; Ditsche P; Mail M; Gries T; Barthlott W
    Bioinspir Biomim; 2023 Apr; 18(3):. PubMed ID: 36881911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifunctional and Washable Carbon Nanotube-Wrapped Textile Yarns for Wearable E-Textiles.
    Hossain MM; Lubna MM; Bradford PD
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):3365-3376. PubMed ID: 36622361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of yarn structure on wicking and its impact on bloodstain pattern analysis (BPA) on woven cotton fabrics.
    Li X; Li J; Michielsen S
    Forensic Sci Int; 2017 Jul; 276():41-50. PubMed ID: 28499150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-Dimensional Maskless Fabrication of Bionic Unidirectional Liquid Spreading Surfaces Using a Phase Spatially Shaped Femtosecond Laser.
    Chen X; Li X; Zuo P; Liang M; Li X; Xu C; Yuan Y; Wang S
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13781-13791. PubMed ID: 33703880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wet-Driven Bionic Actuators from Wool Artificial Yarn Muscles.
    Li K; Shen H; Xue W
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):16232-16243. PubMed ID: 36942675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Yarn-Level Simulation of Hygroscopicity of Woven Textiles.
    Mao A; Dong W; Xie C; Wang H; Liu YJ; Li G; He Y
    IEEE Trans Vis Comput Graph; 2023 Dec; 29(12):5250-5264. PubMed ID: 36103450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of ring, airjet and rotor spun yarn structures on the fragmented fibers (microplastics) released from polyester textiles during laundering.
    Jabbar A; Tausif M
    Text Res J; 2023 Nov; 93(21-22):5017-5028. PubMed ID: 37920184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bio-Inspired Textiles for Self-Driven Oil-Water Separation-A Simulative Analysis of Fluid Transport.
    Beek L; Skirde JE; Akdere M; Gries T
    Biomimetics (Basel); 2024 Apr; 9(5):. PubMed ID: 38786471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design, Development, and Characterization of Advanced Textile Structural Hollow Composites.
    Kamble Z; Mishra RK; Behera BK; Tichý M; Kolář V; Müller M
    Polymers (Basel); 2021 Oct; 13(20):. PubMed ID: 34685295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An ultraflexible polyurethane yarn-based wearable strain sensor with a polydimethylsiloxane infiltrated multilayer sheath for smart textiles.
    Li X; Koh KH; Farhan M; Lai KWC
    Nanoscale; 2020 Feb; 12(6):4110-4118. PubMed ID: 32022071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vibration-Sensing Electronic Yarns for the Monitoring of Hand Transmitted Vibrations.
    Rahemtulla Z; Hughes-Riley T; Dias T
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33920830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinspired and Post-Functionalized 3D-Printed Surfaces with Parahydrophobic Properties.
    Ciffréo L; Marchand C; Szczepanski CR; Medici MG; Godeau G
    Biomimetics (Basel); 2021 Dec; 6(4):. PubMed ID: 34940014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nondestructive Quantitative Evaluation of Yarns and Fabrics and Determination of Contact Area of Fabrics Using the X-ray Microcomputed Tomography System for Skin-Textile Friction Analysis.
    Baby R; Mathur K; DenHartog E
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4652-4664. PubMed ID: 33428371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Structure and Composition of Woven Fabrics on the Conductivity of Flexography Printed Electronics.
    Rodes-Carbonell AM; Ferri J; Garcia-Breijo E; Montava I; Bou-Belda E
    Polymers (Basel); 2021 Sep; 13(18):. PubMed ID: 34578064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melding Vapor-Phase Organic Chemistry and Textile Manufacturing To Produce Wearable Electronics.
    Andrew TL; Zhang L; Cheng N; Baima M; Kim JJ; Allison L; Hoxie S
    Acc Chem Res; 2018 Apr; 51(4):850-859. PubMed ID: 29521501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Petal effect: a superhydrophobic state with high adhesive force.
    Feng L; Zhang Y; Xi J; Zhu Y; Wang N; Xia F; Jiang L
    Langmuir; 2008 Apr; 24(8):4114-9. PubMed ID: 18312016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.