These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 361732)

  • 1. Construction of an L-arginine-producing mutant in Serratia marcescens. Use of the wide substrate specificity of acetylornithinase.
    Kisumi M; Takagi T; Chibata I
    J Biochem; 1978 Oct; 84(4):881-90. PubMed ID: 361732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of argE-argH expression with arginine derivatives in Escherichia coli: extreme non-uniformity of repression and conditional repressive action.
    Bollon AP; Vogel HJ
    J Bacteriol; 1973 May; 114(2):632-40. PubMed ID: 4574695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Instability of an arginine-overproducing mutant of Serratia marcescens and its stabilization.
    Takagi T; Sugiura M; Kisumi M
    J Biochem; 1986 Feb; 99(2):357-64. PubMed ID: 3516981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of inducible feedback-resistant N-acetylglutamate synthetase (argA) genes for enhanced arginine biosynthesis by genetically engineered Escherichia coli K-12 strains.
    Rajagopal BS; DePonte J; Tuchman M; Malamy MH
    Appl Environ Microbiol; 1998 May; 64(5):1805-11. PubMed ID: 9572954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Translational repression in the arginine system of Escherichia coli.
    McLellan WL; Vogel HJ
    Proc Natl Acad Sci U S A; 1970 Dec; 67(4):1703-9. PubMed ID: 4923118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transductional construction of a threonine-producing strain of Serratia marcescens.
    Komatsubara S; Kisumi M; Chibata I
    Appl Environ Microbiol; 1979 Dec; 38(6):1045-51. PubMed ID: 393167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transductional construction of an isoleucine-producing strain of Serratia marcescens.
    Komatsubara S; Kisumi M; Chibata I
    J Gen Microbiol; 1980 Jul; 119(1):51-61. PubMed ID: 6774054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of arginine biosynthesis in the bacterial domain: novel gene-enzyme relationships from psychrophilic Moritella strains (Vibrionaceae) and evolutionary significance of N-alpha-acetyl ornithinase.
    Xu Y; Liang Z; Legrain C; RĂ¼ger HJ; Glansdorff N
    J Bacteriol; 2000 Mar; 182(6):1609-15. PubMed ID: 10692366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathway for isoleucine formation form pyruvate by leucine biosynthetic enzymes in leucine-accumulating isoleucine revertants of Serratia marcescens.
    Kisumi M; Komatsubara S; Chibata I
    J Biochem; 1977 Jul; 82(1):95-103. PubMed ID: 142769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymes of arginine biosynthesis and their repressive control.
    Vogel HJ; Vogel RH
    Adv Enzymol Relat Areas Mol Biol; 1974; 40(0):65-90. PubMed ID: 4365537
    [No Abstract]   [Full Text] [Related]  

  • 11. Isolation and characterization of mutants with a feedback resistant N-acetylglutamate synthase in Escherichia coli K 12.
    Eckhardt T; Leisinger T
    Mol Gen Genet; 1975 Jun; 138(3):225-32. PubMed ID: 1102931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The regulation of arginine biosynthesis in Saccharomyces cerevisiae. The specificity of argR- mutations and the general control of amino-acid biosynthesis.
    Delforge J; Messenguy F; Wiame JM
    Eur J Biochem; 1975 Sep; 57(1):231-9. PubMed ID: 1100402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organization and control in the arginine biosynthetic pathway of Neurospora.
    Cybis J; Davis RH
    J Bacteriol; 1975 Jul; 123(1):196-202. PubMed ID: 166979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alteration of regulation of arginine biosynthesis in Escherichia coli W by mutation to rifampin resistance.
    Wozny ME; Carnevale HN; Jones EE
    Biochim Biophys Acta; 1975 Feb; 383(1):106-16. PubMed ID: 1091297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and kinetic mechanism of mono- and bifunctional ornithine acetyltransferases from thermophilic microorganisms.
    Marc F; Weigel P; Legrain C; Almeras Y; Santrot M; Glansdorff N; Sakanyan V
    Eur J Biochem; 2000 Aug; 267(16):5217-26. PubMed ID: 10931207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning and characterization of argR, a gene that participates in regulation of arginine biosynthesis and catabolism in Pseudomonas aeruginosa PAO1.
    Park SM; Lu CD; Abdelal AT
    J Bacteriol; 1997 Sep; 179(17):5300-8. PubMed ID: 9286980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and partial characterization of an argR mutant of Salmonella typhimurium.
    Kelln RA; O'Donovan GA
    J Bacteriol; 1976 Nov; 128(2):528-35. PubMed ID: 185197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis of norvaline, norleucine, and homoisoleucine in Serratia marcescens.
    Kisumi M; Sugiura M; Chibata I
    J Biochem; 1976 Aug; 80(2):333-9. PubMed ID: 794063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved L-ornithine production in Corynebacterium crenatum by introducing an artificial linear transacetylation pathway.
    Shu Q; Xu M; Li J; Yang T; Zhang X; Xu Z; Rao Z
    J Ind Microbiol Biotechnol; 2018 Jun; 45(6):393-404. PubMed ID: 29728854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increase in arginine and citrulline production by 6-azauracil-resistant mutants of Bacillus subtilis.
    Kato J; Kisumi M; Takagi T; Chibata I
    Appl Environ Microbiol; 1977 Dec; 34(6):689-94. PubMed ID: 202194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.