BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 36173305)

  • 1. Clinical application of ultra-high resolution compressed sensing time-of-flight MR angiography at 7T to detect small vessel pathology.
    Lakhani DA; Zhou X; Tao S; Westerhold EM; Eidelman BH; Singh Sandhu SJ; Middlebrooks EH
    Neuroradiol J; 2023 Jun; 36(3):335-340. PubMed ID: 36173305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High resolution time-of-flight MR-angiography at 7 T exploiting VERSE saturation, compressed sensing and segmentation.
    Meixner CR; Liebig P; Speier P; Forman C; Hensel B; Schmidt M; Saake M; Uder M; Doerfler A; Heidemann RM; Schmitter S; Nagel AM
    Magn Reson Imaging; 2019 Nov; 63():193-204. PubMed ID: 31434005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra high field TOF-MRA: A method to visualize small cerebral vessels. 7T TOF-MRA sequence parameters on different MRI scanners - Literature review.
    Grochowski C; Staśkiewicz G
    Neurol Neurochir Pol; 2017; 51(5):411-418. PubMed ID: 28774679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved visualization of superficial temporal artery using segmented time-of-flight MR angiography with venous suppression at 7T.
    Wei N; Zhang Z; An J; Weng D; Zhuo Y
    Neuroradiology; 2018 Nov; 60(11):1243-1246. PubMed ID: 30244414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution postcontrast time-of-flight MR angiography of intracranial perforators at 7.0 Tesla.
    Harteveld AA; De Cocker LJ; Dieleman N; van der Kolk AG; Zwanenburg JJ; Robe PA; Luijten PR; Hendrikse J
    PLoS One; 2015; 10(3):e0121051. PubMed ID: 25774881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualization of the Lenticulostriate artery with 3-dimensional time-of-flight magnetic resonance angiography combined with the compressed sensing technique using a 3-T magnetic resonance imaging system.
    Huang F; Guo Y; Chen R; Lin S
    Magn Reson Imaging; 2023 Oct; 102():38-42. PubMed ID: 36608910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly accelerated time-of-flight magnetic resonance angiography using spiral imaging improves conspicuity of intracranial arterial branches while reducing scan time.
    Greve T; Sollmann N; Hock A; Hey S; Gnanaprakasam V; Nijenhuis M; Zimmer C; Kirschke JS
    Eur Radiol; 2020 Feb; 30(2):855-865. PubMed ID: 31664504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-high resolution, 3-dimensional magnetic resonance imaging of the atherosclerotic vessel wall at clinical 7T.
    Willemink MJ; Coolen BF; Dyvorne H; Robson PM; Bander I; Ishino S; Pruzan A; Sridhar A; Zhang B; Balchandani P; Mani V; Strijkers GJ; Nederveen AJ; Leiner T; Fayad ZA; Mulder WJM; Calcagno C
    PLoS One; 2020; 15(12):e0241779. PubMed ID: 33315867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous time-of-flight MR angiography and quantitative susceptibility mapping with key time-of-flight features.
    De A; Grenier J; Wilman AH
    NMR Biomed; 2024 Apr; 37(4):e5079. PubMed ID: 38054247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast Intracranial Vessel Imaging With Non-Cartesian Spiral 3-Dimensional Time-of-Flight Magnetic Resonance Angiography at 1.5 T: An In Vitro and Clinical Study in Healthy Volunteers.
    Sartoretti T; van Smoorenburg L; Sartoretti E; Schwenk Á; Binkert CA; Kulcsár Z; Becker AS; Graf N; Wyss M; Sartoretti-Schefer S
    Invest Radiol; 2020 May; 55(5):293-303. PubMed ID: 31895223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of lenticulostriate arteries with high resolution black-blood T1-weighted turbo spin echo with variable flip angles at 3 and 7 Tesla.
    Ma SJ; Sarabi MS; Yan L; Shao X; Chen Y; Yang Q; Jann K; Toga AW; Shi Y; Wang DJJ
    Neuroimage; 2019 Oct; 199():184-193. PubMed ID: 31158475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Moyamoya Vessel Pathology Imaged by Ultra-High-Field Magnetic Resonance Imaging at 7.0 T.
    Dengler NF; Madai VI; Wuerfel J; von Samson-Himmelstjerna FC; Dusek P; Niendorf T; Sobesky J; Vajkoczy P
    J Stroke Cerebrovasc Dis; 2016 Jun; 25(6):1544-51. PubMed ID: 27053027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical feasibility study of 3D intracranial magnetic resonance angiography using compressed sensing.
    Lin Z; Zhang X; Guo L; Wang K; Jiang Y; Hu X; Huang Y; Wei J; Ma S; Liu Y; Zhu L; Zhuo Z; Liu J; Wang X
    J Magn Reson Imaging; 2019 Dec; 50(6):1843-1851. PubMed ID: 30980468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Added diagnostic values of three-dimensional high-resolution proton density-weighted magnetic resonance imaging for unruptured intracranial aneurysms in the circle-of-Willis: Comparison with time-of-flight magnetic resonance angiography.
    Yim Y; Jung SC; Kim JY; Kim SO; Kim BJ; Lee DH; Park W; Park JC; Ahn JS
    PLoS One; 2020; 15(12):e0243235. PubMed ID: 33270756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved cerebral time-of-flight magnetic resonance angiography at 7 Tesla--feasibility study and preliminary results using optimized venous saturation pulses.
    Wrede KH; Johst S; Dammann P; Özkan N; Mönninghoff C; Kraemer M; Maderwald S; Ladd ME; Sure U; Umutlu L; Schlamann M
    PLoS One; 2014; 9(9):e106697. PubMed ID: 25232868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3 T contrast-enhanced magnetic resonance angiography for evaluation of the intracranial arteries: comparison with time-of-flight magnetic resonance angiography and multislice computed tomography angiography.
    Villablanca JP; Nael K; Habibi R; Nael A; Laub G; Finn JP
    Invest Radiol; 2006 Nov; 41(11):799-805. PubMed ID: 17035870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Ultrafast Spiral Head MR Angiography Compared to Standard MR and CT Angiography.
    Greve T; Sollmann N; Hock A; Zimmer C; Kirschke JS
    J Neuroimaging; 2021 Jan; 31(1):45-56. PubMed ID: 33118692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 7T versus 3T MR Angiography to Assess Unruptured Intracranial Aneurysms.
    Leemans E; Cornelissen B; Sing MLC; Sprengers M; van den Berg R; Roos Y; Vandertop WP; Slump C; Marquering H; Majoie C
    J Neuroimaging; 2020 Nov; 30(6):779-785. PubMed ID: 32857906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerebral TOF angiography at 7T: Impact of B1 (+) shimming with a 16-channel transceiver array.
    Schmitter S; Wu X; Adriany G; Auerbach EJ; Uğurbil K; Moortele PF
    Magn Reson Med; 2014 Mar; 71(3):966-77. PubMed ID: 23640915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-High-Resolution Time-of-Flight MR-Angiography for the Noninvasive Assessment of Intracranial Aneurysms, Alternative to Preinterventional DSA?
    Schubert T; Husain HS; Thurner P; Madjidyar J; Barnaure I; Piccirelli M; Klarhöfer M; Schmidt M; Speier P; Forman C; Kulcsar Z
    Clin Neuroradiol; 2023 Dec; 33(4):1115-1122. PubMed ID: 37401949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.