BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36173370)

  • 1. Charge-Transfer-Mediated Mechanism Dominates Oxygen Quenching of Ligand-Protected Noble-Metal Cluster Photoluminescence.
    Mitsui M; Arima D; Uchida A; Yoshida K; Arai Y; Kawasaki K; Niihori Y
    J Phys Chem Lett; 2022 Oct; 13(40):9272-9278. PubMed ID: 36173370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Quenching of Porphyrin Triplet States by Two-Photon Absorbing Dyes: Towards Two-Photon-Enhanced Oxygen Nanosensors.
    Finikova OS; Chen P; Ou Z; Kadish KM; Vinogradov SA
    J Photochem Photobiol A Chem; 2008; 198(1):75-84. PubMed ID: 19030124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photophysical Processes in Rhenium(I) Diiminetricarbonyl Arylisocyanides Featuring Three Interacting Triplet Excited States.
    Favale JM; Danilov EO; Yarnell JE; Castellano FN
    Inorg Chem; 2019 Jul; 58(13):8750-8762. PubMed ID: 31247860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photophysics of indole-2-carboxylic acid (I2C) and indole-5-carboxylic acid (I5C): heavy atom effect.
    Kowalska-Baron A; Gałęcki K; Wysocki S
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Dec; 116():183-95. PubMed ID: 23933843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A thirty-fold photoluminescence enhancement induced by secondary ligands in monolayer protected silver clusters.
    Khatun E; Ghosh A; Chakraborty P; Singh P; Bodiuzzaman M; Ganesan P; Nataranjan G; Ghosh J; Pal SK; Pradeep T
    Nanoscale; 2018 Nov; 10(42):20033-20042. PubMed ID: 30351319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for triplet-state-dominated luminescence in biicosahedral superatomic molecular Au
    Mitsui M; Wada Y; Kishii R; Arima D; Niihori Y
    Nanoscale; 2022 Jun; 14(22):7974-7979. PubMed ID: 35470826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the Quenching of Quantum Dot Photoluminescence by Peptide-Labeled Ruthenium(II) Complexes.
    Scott AM; Algar WR; Stewart MH; Trammell SA; Blanco-Canosa JB; Dawson PE; Deschamps JR; Goswami R; Oh E; Huston AL; Medintz IL
    J Phys Chem C Nanomater Interfaces; 2014 May; 118(17):9239-9250. PubMed ID: 24817922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reexamination of the Rehm-Weller data set reveals electron transfer quenching that follows a Sandros-Boltzmann dependence on free energy.
    Farid S; Dinnocenzo JP; Merkel PB; Young RH; Shukla D; Guirado G
    J Am Chem Soc; 2011 Aug; 133(30):11580-7. PubMed ID: 21736293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quenching of Triplet State Tetrakis(&mgr;-pyrophosphito-PP')diplatinate(II) by Nickel(II) Macrocyclic and Tris-diimine Complexes.
    Mackay I; Cai LZ; Kirk AD; McAuley A
    Inorg Chem; 1999 Aug; 38(16):3628-3633. PubMed ID: 11671118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning the emissive triplet excited states of platinum(II) Schiff base complexes with pyrene, and application for luminescent oxygen sensing and triplet-triplet-annihilation based upconversions.
    Wu W; Sun J; Ji S; Wu W; Zhao J; Guo H
    Dalton Trans; 2011 Nov; 40(43):11550-61. PubMed ID: 21952177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of quenching by oxygen of the excited states of ruthenium(II) complexes in aqueous media. Solvent isotope effect and photosensitized generation of singlet oxygen, O2(1Deltag), by [Ru(diimine)(CN)4]2- complex ions.
    Abdel-Shafi AA; Ward MD; Schmidt R
    Dalton Trans; 2007 Jun; (24):2517-27. PubMed ID: 17563787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supra-nanosecond dynamics of a red-to-blue photon upconversion system.
    Singh-Rachford TN; Castellano FN
    Inorg Chem; 2009 Mar; 48(6):2541-8. PubMed ID: 19215072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thiol-activated triplet-triplet annihilation upconversion: study of the different quenching effect of electron acceptor on the singlet and triplet excited states of Bodipy.
    Zhang C; Zhao J; Cui X; Wu X
    J Org Chem; 2015 Jun; 80(11):5674-86. PubMed ID: 25941747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photosensitized generation of singlet oxygen from ruthenium(II) and osmium(II) bipyridyl complexes.
    Abdel-Shafi AA; Worrall DR; Ershov AY
    Dalton Trans; 2004 Jan; (1):30-6. PubMed ID: 15356738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclometalated iridium(III) complexes for phosphorescence sensing of biological metal ions.
    You Y; Cho S; Nam W
    Inorg Chem; 2014 Feb; 53(4):1804-15. PubMed ID: 24266501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The distinct O
    Cheng YH; Belyaev A; Ho ML; Koshevoy IO; Chou PT
    Phys Chem Chem Phys; 2020 Dec; 22(46):27144-27156. PubMed ID: 33226034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variations in efficiencies of triplet state and exciplex formation following fluorescence quenching of 9,10-dicyanoanthracene due to charge transfer interactions.
    Olea AF; Worrall DR; Wilkinson F
    Photochem Photobiol Sci; 2003 Mar; 2(3):212-7. PubMed ID: 12713219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for static quenching of MLCT excited states by iodide.
    Clark CC; Marton A; Meyer GJ
    Inorg Chem; 2005 May; 44(10):3383-5. PubMed ID: 15877416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental and theoretical studies on the mechanism of photochemical hydrogen transfer from 2-aminobenzimidazole to nπ* and ππ* aromatic ketones.
    Jornet D; Bartovský P; Domingo LR; Tormos R; Miranda MA
    J Phys Chem B; 2010 Sep; 114(36):11920-6. PubMed ID: 20735030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Switch-over in photochemical reaction mechanism from hydrogen abstraction to exciplex-induced quenching: interaction of triplet-excited versus singlet-excited acetone versus cumyloxyl radicals with amines.
    Pischel U; Nau WM
    J Am Chem Soc; 2001 Oct; 123(40):9727-37. PubMed ID: 11583533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.