These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 36173398)

  • 1. Inclusion of High-Field Target Data in AMOEBA's Calibration Improves Predictions of Protein-Ion Interactions.
    Delgado JA; Wineman-Fisher V; Pandit S; Varma S
    J Chem Inf Model; 2022 Oct; 62(19):4713-4726. PubMed ID: 36173398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polarizable AMOEBA Model for Simulating Mg
    Delgado JM; Nagy PR; Varma S
    J Chem Inf Model; 2024 Jan; 64(2):378-392. PubMed ID: 38051630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Dimensional Parameter Search Method to Determine Force Field Mixing Terms in Molecular Simulations.
    Saunders M; Wineman-Fisher V; Jakobsson E; Varma S; Pandit SA
    Langmuir; 2022 Mar; 38(9):2840-2851. PubMed ID: 35192365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved description of ligand polarization enhances transferability of ion-ligand interactions.
    Wineman-Fisher V; Al-Hamdani Y; Nagy PR; Tkatchenko A; Varma S
    J Chem Phys; 2020 Sep; 153(9):094115. PubMed ID: 32891085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transferable interactions of Li
    Wineman-Fisher V; Delgado JM; Nagy PR; Jakobsson E; Pandit SA; Varma S
    J Chem Phys; 2020 Sep; 153(10):104113. PubMed ID: 32933310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomolecular force fields: where have we been, where are we now, where do we need to go and how do we get there?
    Dauber-Osguthorpe P; Hagler AT
    J Comput Aided Mol Des; 2019 Feb; 33(2):133-203. PubMed ID: 30506158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force field development phase II: Relaxation of physics-based criteria… or inclusion of more rigorous physics into the representation of molecular energetics.
    Hagler AT
    J Comput Aided Mol Des; 2019 Feb; 33(2):205-264. PubMed ID: 30506159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate Host-Guest Binding Free Energies Using the AMOEBA Polarizable Force Field.
    Chung MKJ; Miller RJ; Novak B; Wang Z; Ponder JW
    J Chem Inf Model; 2023 May; 63(9):2769-2782. PubMed ID: 37075788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations.
    Joung IS; Cheatham TE
    J Phys Chem B; 2008 Jul; 112(30):9020-41. PubMed ID: 18593145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing Ion-Water Interactions in the AMOEBA Force Field Using Energy Decomposition Analysis of Electronic Structure Calculations.
    Mao Y; Demerdash O; Head-Gordon M; Head-Gordon T
    J Chem Theory Comput; 2016 Nov; 12(11):5422-5437. PubMed ID: 27709939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing many-body contributions to intermolecular interactions of the AMOEBA force field using energy decomposition analysis of electronic structure calculations.
    Demerdash O; Mao Y; Liu T; Head-Gordon M; Head-Gordon T
    J Chem Phys; 2017 Oct; 147(16):161721. PubMed ID: 29096520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion-Hydroxyl Interactions: From High-Level Quantum Benchmarks to Transferable Polarizable Force Fields.
    Wineman-Fisher V; Al-Hamdani Y; Addou I; Tkatchenko A; Varma S
    J Chem Theory Comput; 2019 Apr; 15(4):2444-2453. PubMed ID: 30830778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved Modeling of Cation-π and Anion-Ring Interactions Using the Drude Polarizable Empirical Force Field for Proteins.
    Lin FY; MacKerell AD
    J Comput Chem; 2020 Feb; 41(5):439-448. PubMed ID: 31518010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving Condensed-Phase Water Dynamics with Explicit Nuclear Quantum Effects: The Polarizable Q-AMOEBA Force Field.
    Mauger N; Plé T; Lagardère L; Huppert S; Piquemal JP
    J Phys Chem B; 2022 Nov; 126(43):8813-8826. PubMed ID: 36270033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scalable hybrid deep neural networks/polarizable potentials biomolecular simulations including long-range effects.
    Jaffrelot Inizan T; Plé T; Adjoua O; Ren P; Gökcan H; Isayev O; Lagardère L; Piquemal JP
    Chem Sci; 2023 May; 14(20):5438-5452. PubMed ID: 37234902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of interactions between metal ions and protein model compounds by energy decomposition analyses and the AMOEBA force field.
    Jing Z; Qi R; Liu C; Ren P
    J Chem Phys; 2017 Oct; 147(16):161733. PubMed ID: 29096462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate Description of Solvent-Exposed Salt Bridges with a Non-polarizable Force Field Incorporating Solvent Effects.
    Liu H; Fu H; Chipot C; Shao X; Cai W
    J Chem Inf Model; 2022 Aug; 62(16):3863-3873. PubMed ID: 35920605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benchmarking polarizable and non-polarizable force fields for Ca
    Amin KS; Hu X; Salahub DR; Baldauf C; Lim C; Noskov S
    J Chem Phys; 2020 Oct; 153(14):144102. PubMed ID: 33086838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of polarizable models for molecular mechanical calculations. 4. van der Waals parametrization.
    Wang J; Cieplak P; Li J; Cai Q; Hsieh MJ; Luo R; Duan Y
    J Phys Chem B; 2012 Jun; 116(24):7088-101. PubMed ID: 22612331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A valence bond model for aqueous Cu(II) and Zn(II) ions in the AMOEBA polarizable force field.
    Xiang JY; Ponder JW
    J Comput Chem; 2013 Apr; 34(9):739-49. PubMed ID: 23212979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.