BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 36173565)

  • 1. Chromatin Immunoprecipitation Sequencing (ChIP-seq) for Detecting Histone Modifications and Modifiers.
    Hino S; Sato T; Nakao M
    Methods Mol Biol; 2023; 2577():55-64. PubMed ID: 36173565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CATCH-UP: A High-Throughput Upstream-Pipeline for Bulk ATAC-Seq and ChIP-Seq Data.
    Riva SG; Georgiades E; Gur ER; Baxter M; Hughes JR
    J Vis Exp; 2023 Sep; (199):. PubMed ID: 37811941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification of mouse hepatic non-parenchymal cells or nuclei for use in ChIP-seq and other next-generation sequencing approaches.
    Troutman TD; Bennett H; Sakai M; Seidman JS; Heinz S; Glass CK
    STAR Protoc; 2021 Mar; 2(1):100363. PubMed ID: 33748781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perm-seq: Mapping Protein-DNA Interactions in Segmental Duplication and Highly Repetitive Regions of Genomes with Prior-Enhanced Read Mapping.
    Zeng X; Li B; Welch R; Rojo C; Zheng Y; Dewey CN; Keleş S
    PLoS Comput Biol; 2015 Oct; 11(10):e1004491. PubMed ID: 26484757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single sample sequencing (S3EQ) of epigenome and transcriptome in nucleus accumbens.
    Xu SJ; Heller EA
    J Neurosci Methods; 2018 Oct; 308():62-73. PubMed ID: 30031009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lisa: inferring transcriptional regulators through integrative modeling of public chromatin accessibility and ChIP-seq data.
    Qin Q; Fan J; Zheng R; Wan C; Mei S; Wu Q; Sun H; Brown M; Zhang J; Meyer CA; Liu XS
    Genome Biol; 2020 Feb; 21(1):32. PubMed ID: 32033573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. aFARP-ChIP-seq, a convenient and reliable method for genome profiling in as few as 100 cells with a capability for multiplexing ChIP-seq.
    Liu W; Yue S; Zheng X; Hu M; Cao J; Zheng Y
    Epigenetics; 2019 Sep; 14(9):877-893. PubMed ID: 31169445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased peak detection accuracy in over-dispersed ChIP-seq data with supervised segmentation models.
    Liehrmann A; Rigaill G; Hocking TD
    BMC Bioinformatics; 2021 Jun; 22(1):323. PubMed ID: 34126932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Titration-based normalization of antibody amount improves consistency of ChIP-seq experiments.
    Caride A; Jang JS; Shi GX; Lenz S; Zhong J; Kim KH; Allen M; Robertson KD; Farrugia G; Ordog T; Ertekin-Taner N; Lee JH
    BMC Genomics; 2023 Apr; 24(1):171. PubMed ID: 37016279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Streamlined quantitative analysis of histone modification abundance at nucleosome-scale resolution with siQ-ChIP version 2.0.
    Dickson BM; Kupai A; Vaughan RM; Rothbart SB
    Sci Rep; 2023 May; 13(1):7508. PubMed ID: 37160995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Segmentation and genome annotation algorithms for identifying chromatin state and other genomic patterns.
    Libbrecht MW; Chan RCW; Hoffman MM
    PLoS Comput Biol; 2021 Oct; 17(10):e1009423. PubMed ID: 34648491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EPIGENE: genome-wide transcription unit annotation using a multivariate probabilistic model of histone modifications.
    Sahu A; Li N; Dunkel I; Chung HR
    Epigenetics Chromatin; 2020 Apr; 13(1):20. PubMed ID: 32264931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An optimized protocol for rapid, sensitive and robust on-bead ChIP-seq from primary cells.
    Texari L; Spann NJ; Troutman TD; Sakai M; Seidman JS; Heinz S
    STAR Protoc; 2021 Mar; 2(1):100358. PubMed ID: 33718886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A tissue dissociation method for ATAC-seq and CUT&RUN in
    Buchert EM; Fogarty EA; Uyehara CM; McKay DJ; Buttitta LA
    Fly (Austin); 2023 Dec; 17(1):2209481. PubMed ID: 37211836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimized protocols for chromatin immunoprecipitation of exogenously expressed epitope-tagged proteins.
    Fang W; Liao C; Zhang Q
    STAR Protoc; 2023 Mar; 4(1):102050. PubMed ID: 36853721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ncHMR detector: a computational framework to systematically reveal non-classical functions of histone modification regulators.
    Hu S; Huo D; Yu Z; Chen Y; Liu J; Liu L; Wu X; Zhang Y
    Genome Biol; 2020 Feb; 21(1):48. PubMed ID: 32093739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatin immunoprecipitation improvements for the processing of small frozen pieces of adipose tissue.
    Castellano-Castillo D; Denechaud PD; Moreno-Indias I; Tinahones F; Fajas L; Queipo-Ortuño MI; Cardona F
    PLoS One; 2018; 13(2):e0192314. PubMed ID: 29444131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Completing the ENCODE3 compendium yields accurate imputations across a variety of assays and human biosamples.
    Schreiber J; Bilmes J; Noble WS
    Genome Biol; 2020 Mar; 21(1):82. PubMed ID: 32228713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. asteRIa enables robust interaction modeling between chromatin modifications and epigenetic readers.
    Stadler M; Lukauskas S; Bartke T; Müller CL
    Nucleic Acids Res; 2024 May; ():. PubMed ID: 38752495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenetics and suicide: investigating altered H3K14ac unveiled differential expression in
    Arčan IŠ; Kouter K; Zupanc T; Paska AV
    Epigenomics; 2024 Mar; ():. PubMed ID: 38545853
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.