BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 36174214)

  • 21. Looking inside the 'black box': Freezing engineering to ensure the quality of freeze-dried biopharmaceuticals.
    Capozzi LC; Pisano R
    Eur J Pharm Biopharm; 2018 Aug; 129():58-65. PubMed ID: 29787801
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of formulation on the quality and stability of freeze-dried nanoparticles.
    Luo WC; O'Reilly Beringhs A; Kim R; Zhang W; Patel SM; Bogner RH; Lu X
    Eur J Pharm Biopharm; 2021 Dec; 169():256-267. PubMed ID: 34732383
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Screening of novel excipients for freeze-dried protein formulations.
    Holm TP; Meng-Lund H; Rantanen J; Jorgensen L; Grohganz H
    Eur J Pharm Biopharm; 2021 Mar; 160():55-64. PubMed ID: 33508435
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent advances and persistent challenges in the design of freeze-drying process for monoclonal antibodies.
    Hsein H; Auffray J; Noel T; Tchoreloff P
    Pharm Dev Technol; 2022 Nov; 27(9):942-955. PubMed ID: 36206457
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Freeze-drying revolution: unleashing the potential of lyophilization in advancing drug delivery systems.
    Arora S; Dash SK; Dhawan D; Sahoo PK; Jindal A; Gugulothu D
    Drug Deliv Transl Res; 2024 May; 14(5):1111-1153. PubMed ID: 37985541
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lyophilization cycle design for highly concentrated protein formulations supported by micro freeze-dryer and heat flux sensor.
    Carfagna M; Rosa M; Hawe A; Frieß W
    Int J Pharm; 2023 Aug; 643():123285. PubMed ID: 37532010
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In-Situ Molecular Vapor Composition Measurements During Lyophilization.
    Liechty ET; Strongrich AD; Moussa EM; Topp E; Alexeenko AA
    Pharm Res; 2018 Apr; 35(6):115. PubMed ID: 29644443
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Basic Principles of Lyophilization, Part 2.
    Akers MJ
    Int J Pharm Compd; 2016; 20(1):20-7. PubMed ID: 27125053
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Impact of Formulation Composition and Process Settings of Traditional Batch Versus Continuous Freeze-Drying On Protein Aggregation.
    Vanbillemont B; Carpenter JF; Probst C; De Beer T
    J Pharm Sci; 2020 Nov; 109(11):3308-3318. PubMed ID: 32739274
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Significant Drying Time Reduction Using Microwave-Assisted Freeze-Drying for a Monoclonal Antibody.
    Gitter JH; Geidobler R; Presser I; Winter G
    J Pharm Sci; 2018 Oct; 107(10):2538-2543. PubMed ID: 29890173
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aggressive conditions during primary drying as a contemporary approach to optimise freeze-drying cycles of biopharmaceuticals.
    Bjelošević M; Seljak KB; Trstenjak U; Logar M; Brus B; Ahlin Grabnar P
    Eur J Pharm Sci; 2018 Sep; 122():292-302. PubMed ID: 30006178
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Freeze-Drying From Organic Cosolvent Systems, Part 1: Thermal Analysis of Cosolvent-Based Placebo Formulations in the Frozen State.
    Kunz C; Schuldt-Lieb S; Gieseler H
    J Pharm Sci; 2018 Mar; 107(3):887-896. PubMed ID: 29133233
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamical in-situ observation of the lyophilization and vacuum-drying processes of a model biopharmaceutical system by an environmental scanning electron microscope.
    Vetráková Ľ; Neděla V; Runštuk J; Tihlaříková E; Heger D; Shalaev E
    Int J Pharm; 2020 Jul; 585():119448. PubMed ID: 32461002
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of freeze-drying in the development of oral drug delivery systems.
    Siow CR; Wan Sia Heng P; Chan LW
    Expert Opin Drug Deliv; 2016 Nov; 13(11):1595-1608. PubMed ID: 27267745
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Freeze-drying of nanoparticles: How to overcome colloidal instability by formulation and process optimization.
    Trenkenschuh E; Friess W
    Eur J Pharm Biopharm; 2021 Aug; 165():345-360. PubMed ID: 34052428
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of Controlled Ice Nucleation on Stability of Lactate Dehydrogenase During Freeze-Drying.
    Fang R; Tanaka K; Mudhivarthi V; Bogner RH; Pikal MJ
    J Pharm Sci; 2018 Mar; 107(3):824-830. PubMed ID: 29074380
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Freeze-Drying From Organic Co-Solvent Systems, Part 2: Process Modifications to Reduce Residual Solvent Levels and Improve Product Quality Attributes.
    Kunz C; Schuldt-Lieb S; Gieseler H
    J Pharm Sci; 2019 Jan; 108(1):399-415. PubMed ID: 30017885
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Excipients in freeze-dried biopharmaceuticals: Contributions toward formulation stability and lyophilisation cycle optimisation.
    Bjelošević M; Zvonar Pobirk A; Planinšek O; Ahlin Grabnar P
    Int J Pharm; 2020 Feb; 576():119029. PubMed ID: 31953087
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A study on the impact of HPMC viscosity grade and proportion on the functional properties of co-freeze-dried mannitol-HPMC cushioning excipients for compacted MUPS.
    Siow CRS; Heng PWS; Chan LW
    Eur J Pharm Biopharm; 2020 Jun; 151():98-107. PubMed ID: 32302656
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fundamentals of freeze-drying.
    Nail SL; Jiang S; Chongprasert S; Knopp SA
    Pharm Biotechnol; 2002; 14():281-360. PubMed ID: 12189727
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.