These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 36174214)

  • 41. Evaluation of spin freezing versus conventional freezing as part of a continuous pharmaceutical freeze-drying concept for unit doses.
    De Meyer L; Van Bockstal PJ; Corver J; Vervaet C; Remon JP; De Beer T
    Int J Pharm; 2015 Dec; 496(1):75-85. PubMed ID: 25981618
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Crystallizing amino acids as bulking agents in freeze-drying.
    Horn J; Tolardo E; Fissore D; Friess W
    Eur J Pharm Biopharm; 2018 Nov; 132():70-82. PubMed ID: 30201570
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Applications of Freezing and Freeze-Drying in Pharmaceutical Formulations.
    Izutsu KI
    Adv Exp Med Biol; 2018; 1081():371-383. PubMed ID: 30288720
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optimization of Primary Drying in Lyophilization During Early-Phase Drug Development Using a Definitive Screening Design With Formulation and Process Factors.
    Goldman JM; More HT; Yee O; Borgeson E; Remy B; Rowe J; Sadineni V
    J Pharm Sci; 2018 Oct; 107(10):2592-2600. PubMed ID: 29890172
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterization techniques: The stepping stone to liposome lyophilized product development.
    Jia L; Jiang Q; He Z; Wang Y
    Int J Pharm; 2021 May; 601():120519. PubMed ID: 33775728
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Controlled ice nucleation in the field of freeze-drying: fundamentals and technology review.
    Geidobler R; Winter G
    Eur J Pharm Biopharm; 2013 Oct; 85(2):214-22. PubMed ID: 23643793
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Can controlled ice nucleation improve freeze-drying of highly-concentrated protein formulations?
    Geidobler R; Konrad I; Winter G
    J Pharm Sci; 2013 Nov; 102(11):3915-9. PubMed ID: 23963664
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bacteriophage Encapsulation Using Spray Drying for Phage Therapy.
    Malik DJ
    Curr Issues Mol Biol; 2021; 40():303-316. PubMed ID: 32678066
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Instability of therapeutic proteins - An overview of stresses, stabilization mechanisms and analytical techniques involved in lyophilized proteins.
    Butreddy A; Janga KY; Ajjarapu S; Sarabu S; Dudhipala N
    Int J Biol Macromol; 2021 Jan; 167():309-325. PubMed ID: 33275971
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Improved freeze drying efficiency by ice nucleation proteins with ice morphology modification.
    Jin J; Yurkow EJ; Adler D; Lee TC
    Food Res Int; 2018 Apr; 106():90-97. PubMed ID: 29580002
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Using Texture Analysis Technique to Assess the Freeze-Dried Cakes in Vials.
    Hackl EV; Ermolina I
    J Pharm Sci; 2016 Jul; 105(7):2073-85. PubMed ID: 27290623
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In-Process Vapor Composition Monitoring in Application to Lyophilization of Ammonium Salt Formulations.
    Strongrich AD; Tobyn M; Iyer LK; Park Y; Hong J; Alexeenko AA
    J Pharm Sci; 2023 Jan; 112(1):264-271. PubMed ID: 36270539
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lyophilization Cycle Design for Dual Chamber Cartridges and a Method for Online Process Control: The "DCC LyoMate" Procedure.
    Korpus C; Friess W
    J Pharm Sci; 2017 Aug; 106(8):2077-2087. PubMed ID: 28479354
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Development of stable lyophilized protein drug products.
    Remmele RL; Krishnan S; Callahan WJ
    Curr Pharm Biotechnol; 2012 Mar; 13(3):471-96. PubMed ID: 22283723
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Representative Scale-Down Lyophilization Cycle Development Using a Seven-Vial Freeze-Dryer (MicroFD
    Goldman JM; Chen X; Register JT; Nesarikar V; Iyer L; Wu Y; Mugheirbi N; Rowe J
    J Pharm Sci; 2019 Apr; 108(4):1486-1495. PubMed ID: 30468831
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A step forward towards the development of stable freeze-dried liposomes: a quality by design approach (QbD).
    Sylvester B; Porfire A; Achim M; Rus L; Tomuţă I
    Drug Dev Ind Pharm; 2018 Mar; 44(3):385-397. PubMed ID: 29098869
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Practical Advice on Scientific Design of Freeze-Drying Process: 2023 Update.
    Tchessalov S; Maglio V; Kazarin P; Alexeenko A; Bhatnagar B; Sahni E; Shalaev E
    Pharm Res; 2023 Oct; 40(10):2433-2455. PubMed ID: 37783925
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Impact of dextran on thermal properties, product quality attributes, and monoclonal antibody stability in freeze-dried formulations.
    Haeuser C; Goldbach P; Huwyler J; Friess W; Allmendinger A
    Eur J Pharm Biopharm; 2020 Feb; 147():45-56. PubMed ID: 31866444
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rapid determination of dry layer mass transfer resistance for various pharmaceutical formulations during primary drying using product temperature profiles.
    Kuu WY; Hardwick LM; Akers MJ
    Int J Pharm; 2006 Apr; 313(1-2):99-113. PubMed ID: 16513303
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Rapid Depressurization Based Controlled Ice Nucleation in Pharmaceutical Freeze-drying: The Roles of the Ballast Gas and the Vial.
    Strongrich A; Lim FJ; Kumar L; Alexeenko A
    J Pharm Sci; 2021 Nov; 110(11):3639-3647. PubMed ID: 34303673
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.