These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 36174221)

  • 1. Wirelessly Powered Electrical-Stimulation Based on Biodegradable 3D Piezoelectric Scaffolds Promotes the Spinal Cord Injury Repair.
    Chen P; Xu C; Wu P; Liu K; Chen F; Chen Y; Dai H; Luo Z
    ACS Nano; 2022 Oct; 16(10):16513-16528. PubMed ID: 36174221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capacitive-Coupling-Responsive Hydrogel Scaffolds Offering Wireless In Situ Electrical Stimulation Promotes Nerve Regeneration.
    Wu P; Xu C; Zou X; Yang K; Xu Y; Li X; Li X; Wang Z; Luo Z
    Adv Mater; 2024 Apr; 36(14):e2310483. PubMed ID: 38198600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coaxial 3D printing of hierarchical structured hydrogel scaffolds for on-demand repair of spinal cord injury.
    Li Y; Cheng S; Wen H; Xiao L; Deng Z; Huang J; Zhang Z
    Acta Biomater; 2023 Sep; 168():400-415. PubMed ID: 37479156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restoring electrical connection using a conductive biomaterial provides a new therapeutic strategy for rats with spinal cord injury.
    Shu B; Sun X; Liu R; Jiang F; Yu H; Xu N; An Y
    Neurosci Lett; 2019 Jan; 692():33-40. PubMed ID: 30367954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermo-sensitive electroactive hydrogel combined with electrical stimulation for repair of spinal cord injury.
    Liu W; Luo Y; Ning C; Zhang W; Zhang Q; Zou H; Fu C
    J Nanobiotechnology; 2021 Sep; 19(1):286. PubMed ID: 34556136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradable Nanofiber Bone-Tissue Scaffold as Remotely-Controlled and Self-Powering Electrical Stimulator.
    Das R; Curry EJ; Le TT; Awale G; Liu Y; Li S; Contreras J; Bednarz C; Millender J; Xin X; Rowe D; Emadi S; Lo KW; Nguyen TD
    Nano Energy; 2020 Oct; 76():. PubMed ID: 38074984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polycaprolactone/polysialic acid hybrid, multifunctional nanofiber scaffolds for treatment of spinal cord injury.
    Zhang S; Wang XJ; Li WS; Xu XL; Hu JB; Kang XQ; Qi J; Ying XY; You J; Du YZ
    Acta Biomater; 2018 Sep; 77():15-27. PubMed ID: 30126591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional nanofibrous sponges with aligned architecture and controlled hierarchy regulate neural stem cell fate for spinal cord regeneration.
    Li Z; Qi Y; Sun L; Li Z; Chen S; Zhang Y; Ma Y; Han J; Wang Z; Zhang Y; Geng H; Huang B; Wang J; Li G; Li X; Wu S; Ni S
    Theranostics; 2023; 13(14):4762-4780. PubMed ID: 37771775
    [No Abstract]   [Full Text] [Related]  

  • 9. Release of O-GlcNAc transferase inhibitor promotes neuronal differentiation of neural stem cells in 3D bioprinted supramolecular hydrogel scaffold for spinal cord injury repair.
    Liu X; Song S; Chen Z; Gao C; Li Y; Luo Y; Huang J; Zhang Z
    Acta Biomater; 2022 Oct; 151():148-162. PubMed ID: 36002129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A modified collagen scaffold facilitates endogenous neurogenesis for acute spinal cord injury repair.
    Fan C; Li X; Xiao Z; Zhao Y; Liang H; Wang B; Han S; Li X; Xu B; Wang N; Liu S; Xue W; Dai J
    Acta Biomater; 2017 Mar; 51():304-316. PubMed ID: 28069497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in electroactive bioscaffolds for repairing spinal cord injury.
    Liu Z; Lai J; Kong D; Zhao Y; Zhao J; Dai J; Zhang M
    Biomed Mater; 2024 Apr; 19(3):. PubMed ID: 38636508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transplantation of neural scaffolds consisting of dermal fibroblast-reprogrammed neurons and 3D silk fibrous materials promotes the repair of spinal cord injury.
    Hu Y; Zhang F; Zhong W; Liu Y; He Q; Yang M; Chen H; Xu X; Bian K; Xu J; Li J; Shen Y; Zhang H
    J Mater Chem B; 2019 Dec; 7(47):7525-7539. PubMed ID: 31720683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PHBV/PLA/Col-Based Nanofibrous Scaffolds Promote Recovery of Locomotor Function by Decreasing Reactive Astrogliosis in a Hemisection Spinal Cord Injury Rat Model.
    Zhao T; Jing Y; Zhou X; Wang J; Huang X; Gao L; Zhu Y; Wang L; Gou Z; Liang C; Xu K; Li F; Chen Q
    J Biomed Nanotechnol; 2018 Nov; 14(11):1921-1933. PubMed ID: 30165928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural stem cell- and Schwann cell-loaded biodegradable polymer scaffolds support axonal regeneration in the transected spinal cord.
    Olson HE; Rooney GE; Gross L; Nesbitt JJ; Galvin KE; Knight A; Chen B; Yaszemski MJ; Windebank AJ
    Tissue Eng Part A; 2009 Jul; 15(7):1797-805. PubMed ID: 19191513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradable piezoelectric skin-wound scaffold.
    Das R; Le TT; Schiff B; Chorsi MT; Park J; Lam P; Kemerley A; Supran AM; Eshed A; Luu N; Menon NG; Schmidt TA; Wang H; Wu Q; Thirunavukkarasu M; Maulik N; Nguyen TD
    Biomaterials; 2023 Oct; 301():122270. PubMed ID: 37591188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunomodulatory and angiogenic responses induced by graphene oxide scaffolds in chronic spinal hemisected rats.
    López-Dolado E; González-Mayorga A; Gutiérrez MC; Serrano MC
    Biomaterials; 2016 Aug; 99():72-81. PubMed ID: 27214651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Promotion of spinal cord axon regeneration by 3D nanofibrous core-sheath scaffolds.
    Zamani F; Amani-Tehran M; Latifi M; Shokrgozar MA; Zaminy A
    J Biomed Mater Res A; 2014 Feb; 102(2):506-13. PubMed ID: 23533050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteo-inductive effect of piezoelectric stimulation from the poly(l-lactic acid) scaffolds.
    Das R; Le D; Kan HM; Le TT; Park J; Nguyen TD; Lo KW
    PLoS One; 2024; 19(2):e0299579. PubMed ID: 38412168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro neuronal and glial response to magnetically stimulated piezoelectric poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV)/cobalt ferrite (CFO) microspheres.
    Pinho TS; Cibrão JR; Silva D; Barata-Antunes S; Campos J; Afonso JL; Sampaio-Marques B; Ribeiro C; Macedo AS; Martins P; Cunha CB; Lanceros-Mendez S; Salgado AJ
    Biomater Adv; 2024 May; 159():213798. PubMed ID: 38364446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Olfactory ensheathing cells seeded decellularized scaffold promotes axonal regeneration in spinal cord injury rats.
    Yu F; Li P; Du S; Lui KW; Lin Y; Chen L; Ren Q; Wang J; Mei J; Xiao J; Zhu J
    J Biomed Mater Res A; 2021 May; 109(5):779-787. PubMed ID: 32720459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.