BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36174337)

  • 1. Investigating the role of tartaric acid in wine astringency.
    Zhao Q; Du G; Wang S; Zhao P; Cao X; Cheng C; Liu H; Xue Y; Wang X
    Food Chem; 2023 Mar; 403():134385. PubMed ID: 36174337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precipitation of salivary proteins after the interaction with wine: the effect of ethanol, pH, fructose, and mannoproteins.
    Rinaldi A; Gambuti A; Moio L
    J Food Sci; 2012 Apr; 77(4):C485-90. PubMed ID: 22515240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of the SPI (Saliva Precipitation Index) to the evaluation of red wine astringency.
    Rinaldi A; Gambuti A; Moio L
    Food Chem; 2012 Dec; 135(4):2498-504. PubMed ID: 22980834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An integrative salivary approach regarding palate cleansers in wine tasting.
    Taladrid D; Lorente L; Bartolomé B; Moreno-Arribas MV; Laguna L
    J Texture Stud; 2019 Feb; 50(1):75-82. PubMed ID: 30198574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions between wine phenolic compounds and human saliva in astringency perception.
    García-Estévez I; Ramos-Pineda AM; Escribano-Bailón MT
    Food Funct; 2018 Mar; 9(3):1294-1309. PubMed ID: 29417111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A saliva molecular imprinted localized surface plasmon resonance biosensor for wine astringency estimation.
    Guerreiro JRL; Teixeira N; De Freitas V; Sales MGF; Sutherland DS
    Food Chem; 2017 Oct; 233():457-466. PubMed ID: 28530599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Chemical Species on Polyphenol-Protein Interactions Related to Wine Astringency.
    Ramos-Pineda AM; Carpenter GH; García-Estévez I; Escribano-Bailón MT
    J Agric Food Chem; 2020 Mar; 68(10):2948-2954. PubMed ID: 30854856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Salivary protein levels as a predictor of perceived astringency in model systems and solid foods.
    Fleming EE; Ziegler GR; Hayes JE
    Physiol Behav; 2016 Sep; 163():56-63. PubMed ID: 27129672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wine astringency reduces flavor intensity of Brussels sprouts.
    Carpenter G; Cleaver L; Blakeley M; Hasbullah N; Houghton J; Gardner A
    J Texture Stud; 2019 Feb; 50(1):71-74. PubMed ID: 30387878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Astringency is a trigeminal sensation that involves the activation of G protein-coupled signaling by phenolic compounds.
    Schöbel N; Radtke D; Kyereme J; Wollmann N; Cichy A; Obst K; Kallweit K; Kletke O; Minovi A; Dazert S; Wetzel CH; Vogt-Eisele A; Gisselmann G; Ley JP; Bartoshuk LM; Spehr J; Hofmann T; Hatt H
    Chem Senses; 2014 Jul; 39(6):471-87. PubMed ID: 24718416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proanthocyanidin content as an astringency estimation tool and maturation index in red and white winemaking technology.
    Basalekou M; Kyraleou M; Pappas C; Tarantilis P; Kotseridis Y; Kallithraka S
    Food Chem; 2019 Nov; 299():125135. PubMed ID: 31302431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of Arabic gum on astringency by modulating the polyphenol fraction-protein reaction in model wine.
    Wang S; Ma Z; Zhao P; Du G; Sun X; Wang X
    Food Chem; 2023 Aug; 417():135927. PubMed ID: 36933429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Paper chromatography approach for the assessment of interaction between red wine and whole saliva.
    Obreque-Slier E; Medel-Marabolí M; Maldonado-Maldonado E; López-Solís RO
    J Chromatogr A; 2023 Sep; 1707():464266. PubMed ID: 37572383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different physicochemical interactions between varietal wines and human saliva: Correspondence with astringency.
    López-Solís R; Cortés-Araya K; Medel-Marabolí M; Obreque-Slier E
    Food Res Int; 2024 Feb; 178():113964. PubMed ID: 38309881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mannoproteins, arabinogalactan protein, rhamnogalacturonan II and their pairwise combinations regulating wine astringency induced by the interaction of proanthocyanidins and proteins.
    Lei X; Wang S; Zhao P; Wang X
    Int J Biol Macromol; 2023 Jan; 224():950-957. PubMed ID: 36306908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of flavonols on wine astringency and their interaction with human saliva.
    Ferrer-Gallego R; Brás NF; García-Estévez I; Mateus N; Rivas-Gonzalo JC; de Freitas V; Escribano-Bailón MT
    Food Chem; 2016 Oct; 209():358-64. PubMed ID: 27173574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactivity of polymeric proanthocyanidins toward salivary proteins and their contribution to young red wine astringency.
    Sun B; de Sá M; Leandro C; Caldeira I; Duarte FL; Spranger I
    J Agric Food Chem; 2013 Jan; 61(4):939-46. PubMed ID: 23294371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of supplementation with three commercial inactive dry yeasts on the colour, phenolic compounds, polysaccharides and astringency of a model wine solution and red wine.
    González-Royo E; Esteruelas M; Kontoudakis N; Fort F; Canals JM; Zamora F
    J Sci Food Agric; 2017 Jan; 97(1):172-181. PubMed ID: 26970323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rheological study of tannin and protein interactions based on model systems.
    Brossard N; Bordeu E; Ibáñez RA; Chen J; Osorio F
    J Texture Stud; 2020 Aug; 51(4):585-592. PubMed ID: 32110834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of both salivary protein-enological tannin interactions and astringency perception by ethanol.
    Obreque-Slíer E; Peña-Neira A; López-Solís R
    J Agric Food Chem; 2010 Mar; 58(6):3729-35. PubMed ID: 20158256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.