These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36174364)

  • 21. Lower-limb coordination and variability during gait: The effects of age and walking surface.
    Ippersiel P; Robbins SM; Dixon PC
    Gait Posture; 2021 Mar; 85():251-257. PubMed ID: 33626449
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Foot Pronation Contributes to Altered Lower Extremity Loading After Long Distance Running.
    Mei Q; Gu Y; Xiang L; Baker JS; Fernandez J
    Front Physiol; 2019; 10():573. PubMed ID: 31191329
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Soldier-relevant loads impact lower limb biomechanics during anticipated and unanticipated single-leg cutting movements.
    Brown TN; O'Donovan M; Hasselquist L; Corner B; Schiffman JM
    J Biomech; 2014 Nov; 47(14):3494-501. PubMed ID: 25257813
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mid-flight trunk flexion and extension altered segment and lower extremity joint movements and subsequent landing mechanics.
    Davis DJ; Hinshaw TJ; Critchley ML; Dai B
    J Sci Med Sport; 2019 Aug; 22(8):955-961. PubMed ID: 30902539
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bilateral kinematic and kinetic analysis of the squat exercise after anterior cruciate ligament reconstruction.
    Salem GJ; Salinas R; Harding FV
    Arch Phys Med Rehabil; 2003 Aug; 84(8):1211-6. PubMed ID: 12917862
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ankle Dorsiflexion Displacement During Landing is Associated With Initial Contact Kinematics but not Joint Displacement.
    Begalle RL; Walsh MC; McGrath ML; Boling MC; Blackburn JT; Padua DA
    J Appl Biomech; 2015 Aug; 31(4):205-10. PubMed ID: 25734492
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lower extremity joint loads in habitual rearfoot and mid/forefoot strike runners with normal and shortened stride lengths.
    Boyer ER; Derrick TR
    J Sports Sci; 2018 Mar; 36(5):499-505. PubMed ID: 28481686
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Threshold of equinus which alters biomechanical gait parameters in children.
    Houx L; Lempereur M; Rémy-Néris O; Brochard S
    Gait Posture; 2013 Sep; 38(4):582-9. PubMed ID: 23465759
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comparison of dorsal and heel plate foot tracking methods on lower extremity dynamics.
    Hashish R; Samarawickrame SD; Salem GJ
    J Biomech; 2014 Mar; 47(5):1211-4. PubMed ID: 24556124
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The influence of different force and pressure measuring transducers on lower extremity kinematics measured during walking.
    Greenhalgh A; Taylor PJ; Sinclair J
    Gait Posture; 2014 Jul; 40(3):476-9. PubMed ID: 24909580
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of changing plantarflexion resistive moment of an articulated ankle-foot orthosis on ankle and knee joint angles and moments while walking in patients post stroke.
    Kobayashi T; Singer ML; Orendurff MS; Gao F; Daly WK; Foreman KB
    Clin Biomech (Bristol, Avon); 2015 Oct; 30(8):775-80. PubMed ID: 26149007
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Foot strike alters ground reaction force and knee load when stepping down during ongoing walking.
    Moudy SC; Tillin NA; Sibley AR; Strike S
    Gait Posture; 2020 Feb; 76():327-333. PubMed ID: 31896535
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of running retraining on biomechanical factors associated with lower limb injury.
    Dunn MD; Claxton DB; Fletcher G; Wheat JS; Binney DM
    Hum Mov Sci; 2018 Apr; 58():21-31. PubMed ID: 29334675
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolating the energetic and mechanical consequences of imposed reductions in ankle and knee flexion during gait.
    McCain EM; Libera TL; Berno ME; Sawicki GS; Saul KR; Lewek MD
    J Neuroeng Rehabil; 2021 Feb; 18(1):21. PubMed ID: 33526053
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hip and ankle kinematics are the most important predictors of knee joint loading during bicycling.
    Gatti AA; Keir PJ; Noseworthy MD; Beauchamp MK; Maly MR
    J Sci Med Sport; 2021 Jan; 24(1):98-104. PubMed ID: 32948450
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison between overweight due to pregnancy and due to added weight to simulate body mass distribution in pregnancy.
    Aguiar L; Santos-Rocha R; Vieira F; Branco M; Andrade C; Veloso A
    Gait Posture; 2015 Oct; 42(4):511-7. PubMed ID: 26410476
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Redistribution of joint moments and work in older women with and without hallux valgus at two walking speeds.
    Buddhadev HH; Barbee CE
    Gait Posture; 2020 Mar; 77():112-117. PubMed ID: 32028077
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combined three-dimensional gait and plantar pressure analyses detecting significant functional deficits in children with juvenile idiopathic arthritis.
    Merker J; Hartmann M; Haas JP; Schwirtz A
    Gait Posture; 2018 Oct; 66():247-254. PubMed ID: 30218839
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gait patterns in children with limb length discrepancy.
    Aiona M; Do KP; Emara K; Dorociak R; Pierce R
    J Pediatr Orthop; 2015; 35(3):280-4. PubMed ID: 25075889
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.