These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 36174769)

  • 1. Lymphopenic condition enhanced the antitumor immunity of PD-1-knockout T cells mediated by CRISPR/Cas9 system in malignant melanoma.
    Yang Z; Wu H; Lin Q; Wang X; Kang S
    Immunol Lett; 2022 Oct; 250():15-22. PubMed ID: 36174769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blockade of programmed death ligand 1 enhances the therapeutic efficacy of combination immunotherapy against melanoma.
    Pilon-Thomas S; Mackay A; Vohra N; Mulé JJ
    J Immunol; 2010 Apr; 184(7):3442-9. PubMed ID: 20194714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. USP18 is crucial for IFN-γ-mediated inhibition of B16 melanoma tumorigenesis and antitumor immunity.
    Hong B; Li H; Lu Y; Zhang M; Zheng Y; Qian J; Yi Q
    Mol Cancer; 2014 May; 13():132. PubMed ID: 24884733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programmed cell death ligand 1 disruption by clustered regularly interspaced short palindromic repeats/Cas9-genome editing promotes antitumor immunity and suppresses ovarian cancer progression.
    Yahata T; Mizoguchi M; Kimura A; Orimo T; Toujima S; Kuninaka Y; Nosaka M; Ishida Y; Sasaki I; Fukuda-Ohta Y; Hemmi H; Iwahashi N; Noguchi T; Kaisho T; Kondo T; Ino K
    Cancer Sci; 2019 Apr; 110(4):1279-1292. PubMed ID: 30702189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disruption of SIRT7 Increases the Efficacy of Checkpoint Inhibitor via MEF2D Regulation of Programmed Cell Death 1 Ligand 1 in Hepatocellular Carcinoma Cells.
    Xiang J; Zhang N; Sun H; Su L; Zhang C; Xu H; Feng J; Wang M; Chen J; Liu L; Shan J; Shen J; Yang Z; Wang G; Zhou H; Prieto J; Ávila MA; Liu C; Qian C
    Gastroenterology; 2020 Feb; 158(3):664-678.e24. PubMed ID: 31678303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. B16 melanoma control by anti-PD-L1 requires CD8+ T cells and NK cells: application of anti-PD-L1 Abs and Trp2 peptide vaccines.
    Ji S; Lee J; Lee ES; Kim DH; Sin JI
    Hum Vaccin Immunother; 2021 Jul; 17(7):1910-1922. PubMed ID: 33522416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homeostatic proliferation plus regulatory T-cell depletion promotes potent rejection of B16 melanoma.
    Kline J; Brown IE; Zha YY; Blank C; Strickler J; Wouters H; Zhang L; Gajewski TF
    Clin Cancer Res; 2008 May; 14(10):3156-67. PubMed ID: 18483384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. IL7-Fc Enhances the Efficacy of Adoptive T Cell Therapy under Lymphopenic Conditions in a Murine Melanoma Model.
    Yu EM; Cho E; Singh R; Kim SH; Han C; Han S; Lee DG; Kim YH; Kwon BS; Choi BK
    Cells; 2021 Aug; 10(8):. PubMed ID: 34440787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells.
    Rupp LJ; Schumann K; Roybal KT; Gate RE; Ye CJ; Lim WA; Marson A
    Sci Rep; 2017 Apr; 7(1):737. PubMed ID: 28389661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and functional analysis of an anticancer T-cell medicine with immune checkpoint inhibitory ability.
    Fujiwara K; Shigematsu K; Tachibana M; Okada N
    IUBMB Life; 2020 Aug; 72(8):1649-1658. PubMed ID: 32255257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Immunomodulatory Gallotanin-Rich Fraction From
    Lasso P; Gomez-Cadena A; Urueña C; Donda A; Martinez-Usatorre A; Romero P; Barreto A; Fiorentino S
    Front Immunol; 2020; 11():584959. PubMed ID: 33312174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-sgRNA CRISPR/Cas9 knockout of PD-L1 in human U87 glioblastoma tumor cells inhibits proliferation, invasion, and tumor-associated macrophage polarization.
    Fierro J; DiPasquale J; Perez J; Chin B; Chokpapone Y; Tran AM; Holden A; Factoriza C; Sivagnanakumar N; Aguilar R; Mazal S; Lopez M; Dou H
    Sci Rep; 2022 Feb; 12(1):2417. PubMed ID: 35165339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of CRISPR/Cas9-Edited PD-1/PD-L1 on Tumor Immunity and Immunotherapy.
    Xu Y; Chen C; Guo Y; Hu S; Sun Z
    Front Immunol; 2022; 13():848327. PubMed ID: 35300341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic Antitumor Effect on Bladder Cancer by Rational Combination of Programmed Cell Death 1 Blockade and CRISPR-Cas9-Mediated Long Non-Coding RNA Urothelial Carcinoma Associated 1 Knockout.
    Zhen S; Lu J; Chen W; Zhao L; Li X
    Hum Gene Ther; 2018 Dec; 29(12):1352-1363. PubMed ID: 30457360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased antitumor efficacy of PD-1-deficient melanoma-specific human lymphocytes.
    Marotte L; Simon S; Vignard V; Dupre E; Gantier M; Cruard J; Alberge JB; Hussong M; Deleine C; Heslan JM; Shaffer J; Beauvais T; Gaschet J; Scotet E; Fradin D; Jarry A; Nguyen T; Labarriere N
    J Immunother Cancer; 2020 Jan; 8(1):. PubMed ID: 32001504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [New strategy of cancer immunotherapy: irradiation or chemotherapeutics-induced lymphopenia combined with immune reconstitution and tumor vaccine].
    Ma J; Wang YL; Hu HM; Fox BA; Si LS
    Zhonghua Zhong Liu Za Zhi; 2005 Aug; 27(8):452-6. PubMed ID: 16188138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibiting the MNK1/2-eIF4E axis impairs melanoma phenotype switching and potentiates antitumor immune responses.
    Huang F; Gonçalves C; Bartish M; Rémy-Sarrazin J; Issa ME; Cordeiro B; Guo Q; Emond A; Attias M; Yang W; Plourde D; Su J; Gimeno MG; Zhan Y; Galán A; Rzymski T; Mazan M; Masiejczyk M; Faber J; Khoury E; Benoit A; Gagnon N; Dankort D; Journe F; Ghanem GE; Krawczyk CM; Saragovi HU; Piccirillo CA; Sonenberg N; Topisirovic I; Rudd CE; Miller WH; Del Rincón SV
    J Clin Invest; 2021 Apr; 131(8):. PubMed ID: 33690225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined SEP and anti-PD-L1 antibody produces a synergistic antitumor effect in B16-F10 melanoma-bearing mice.
    Hu Z; Ye L; Xing Y; Hu J; Xi T
    Sci Rep; 2018 Jan; 8(1):217. PubMed ID: 29317734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reshaping Tumor Immune Microenvironment through Acidity-Responsive Nanoparticles Featured with CRISPR/Cas9-Mediated Programmed Death-Ligand 1 Attenuation and Chemotherapeutics-Induced Immunogenic Cell Death.
    Tu K; Deng H; Kong L; Wang Y; Yang T; Hu Q; Hu M; Yang C; Zhang Z
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16018-16030. PubMed ID: 32192326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular and molecular requirements for rejection of B16 melanoma in the setting of regulatory T cell depletion and homeostatic proliferation.
    Kline J; Zhang L; Battaglia L; Cohen KS; Gajewski TF
    J Immunol; 2012 Mar; 188(6):2630-42. PubMed ID: 22312128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.