These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 3617507)

  • 21. Receptive field organization of ganglion cells in the frog retina: contributions from cones, green rods and red rods.
    Bäckström AC; Reuter T
    J Physiol; 1975 Mar; 246(1):79-107. PubMed ID: 1079535
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Origin of negative potentials in the light-adapted ERG of cat retina.
    Frishman LJ; Steinberg RH
    J Neurophysiol; 1990 Jun; 63(6):1333-46. PubMed ID: 2358881
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Light-adaptation properties of the ultraviolet-sensitive cone mechanism in comparison to the other receptor mechanisms of goldfish.
    Hawryshyn CW
    Vis Neurosci; 1991 Apr; 6(4):293-301. PubMed ID: 2059568
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The absence of spread of adaptation between rod photoreceptors in turtle retina.
    Copenhagen DR; Green DG
    J Physiol; 1985 Dec; 369():161-81. PubMed ID: 4093878
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interactions between rod and cone systems in the goldfish retina.
    Shefner JM; Levine MW
    Science; 1977 Nov; 198(4318):750-3. PubMed ID: 910160
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A circadian clock regulates rod and cone input to fish retinal cone horizontal cells.
    Wang Y; Mangel SC
    Proc Natl Acad Sci U S A; 1996 May; 93(10):4655-60. PubMed ID: 8643459
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The rod-cone shift and its effect on ganglion cells in the cat's retina.
    Chan LH; Freeman AW; Cleland BG
    Vision Res; 1992 Dec; 32(12):2209-19. PubMed ID: 1287998
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Background and bleaching equivalence in steady-state adaptation of vertebrate rods.
    Leibovic KN; Dowling JE; Kim YY
    J Neurosci; 1987 Apr; 7(4):1056-63. PubMed ID: 3106587
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of background illumination on cat horizontal cell responses.
    Lankheet MJ; van Wezel RJ; van de Grind WA
    Vision Res; 1991; 31(6):919-32. PubMed ID: 1858323
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolation of rod and cone contributions to cat ganglion cells by a method of light exchange.
    Rodieck RW; Rushton WA
    J Physiol; 1976 Jan; 254(3):759-73. PubMed ID: 1255505
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Light adaptation in cat retinal rods.
    Tamura T; Nakatani K; Yau KW
    Science; 1989 Aug; 245(4919):755-8. PubMed ID: 2772634
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrical coupling between rods and cones in the tiger salamander retina.
    Wu SM; Yang XL
    Proc Natl Acad Sci U S A; 1988 Jan; 85(1):275-8. PubMed ID: 3422423
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Light adaptation in cells of macaque lateral geniculate nucleus and its relation to human light adaptation.
    Virsu V; Lee BB
    J Neurophysiol; 1983 Oct; 50(4):864-78. PubMed ID: 6631467
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Convergence of signals from red-sensitive and green-sensitive cones onto L-type external horizontal cells of the goldfish retina.
    Yang XL; Tauchi M; Kaneko A
    Vision Res; 1983; 23(4):371-80. PubMed ID: 6880035
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Response sensitivity and voltage gain of the rod- and cone-bipolar cell synapses in dark-adapted tiger salamander retina.
    Yang XL; Wu SM
    J Neurophysiol; 1997 Nov; 78(5):2662-73. PubMed ID: 9356416
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rod and cone inputs to bipolar and horizontal cells of the Xenopus retina.
    Witkovsky P; Stone S
    Vision Res; 1983; 23(11):1251-8. PubMed ID: 6659374
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intracellular recordings from gecko photoreceptors during light and dark adaptation.
    Kleinschmidt J; Dowling JE
    J Gen Physiol; 1975 Nov; 66(5):617-48. PubMed ID: 1194887
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temporal and spatial properties of suppressive rod-cone interaction.
    Horiguchi M; Eysteinsson T; Arden GB
    Invest Ophthalmol Vis Sci; 1991 Mar; 32(3):575-81. PubMed ID: 2001932
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Light adaptation and sensitivity controlling mechanisms in vertebrate photoreceptors.
    Perlman I; Normann RA
    Prog Retin Eye Res; 1998 Oct; 17(4):523-63. PubMed ID: 9777649
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rods trigger light adaptive retinomotor movements in all spectral cone types of a teleost fish.
    Kirsch M; Wagner HJ; Douglas RH
    Vision Res; 1989; 29(4):389-96. PubMed ID: 2781729
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.