These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 36175460)
1. Time series reconstructing using calibrated reservoir computing. Chen Y; Qian Y; Cui X Sci Rep; 2022 Sep; 12(1):16318. PubMed ID: 36175460 [TBL] [Abstract][Full Text] [Related]
2. Predicting phase and sensing phase coherence in chaotic systems with machine learning. Zhang C; Jiang J; Qu SX; Lai YC Chaos; 2020 Aug; 30(8):083114. PubMed ID: 32872815 [TBL] [Abstract][Full Text] [Related]
3. Constructing polynomial libraries for reservoir computing in nonlinear dynamical system forecasting. Ren HH; Bai YL; Fan MH; Ding L; Yue XX; Yu QH Phys Rev E; 2024 Feb; 109(2-1):024227. PubMed ID: 38491629 [TBL] [Abstract][Full Text] [Related]
4. Cross-predicting the dynamics of an optically injected single-mode semiconductor laser using reservoir computing. Cunillera A; Soriano MC; Fischer I Chaos; 2019 Nov; 29(11):113113. PubMed ID: 31779359 [TBL] [Abstract][Full Text] [Related]
5. Attractor reconstruction with reservoir computers: The effect of the reservoir's conditional Lyapunov exponents on faithful attractor reconstruction. Hart JD Chaos; 2024 Apr; 34(4):. PubMed ID: 38579149 [TBL] [Abstract][Full Text] [Related]
6. Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data. Pathak J; Lu Z; Hunt BR; Girvan M; Ott E Chaos; 2017 Dec; 27(12):121102. PubMed ID: 29289043 [TBL] [Abstract][Full Text] [Related]
7. Learning Hamiltonian dynamics with reservoir computing. Zhang H; Fan H; Wang L; Wang X Phys Rev E; 2021 Aug; 104(2-1):024205. PubMed ID: 34525517 [TBL] [Abstract][Full Text] [Related]
8. Detecting unstable periodic orbits based only on time series: When adaptive delayed feedback control meets reservoir computing. Zhu Q; Ma H; Lin W Chaos; 2019 Sep; 29(9):093125. PubMed ID: 31575157 [TBL] [Abstract][Full Text] [Related]
9. Prediction of chaotic time series using recurrent neural networks and reservoir computing techniques: A comparative study. Shahi S; Fenton FH; Cherry EM Mach Learn Appl; 2022 Jun; 8():. PubMed ID: 35755176 [TBL] [Abstract][Full Text] [Related]
10. Predicting chaotic dynamics from incomplete input via reservoir computing with (D+1)-dimension input and output. Shi L; Yan Y; Wang H; Wang S; Qu SX Phys Rev E; 2023 May; 107(5-1):054209. PubMed ID: 37329034 [TBL] [Abstract][Full Text] [Related]
11. Reservoir computing with logistic map. Arun R; Sathish Aravindh M; Venkatesan A; Lakshmanan M Phys Rev E; 2024 Sep; 110(3-1):034204. PubMed ID: 39425356 [TBL] [Abstract][Full Text] [Related]
12. Application of next-generation reservoir computing for predicting chaotic systems from partial observations. Ratas I; Pyragas K Phys Rev E; 2024 Jun; 109(6-1):064215. PubMed ID: 39021034 [TBL] [Abstract][Full Text] [Related]
13. Reservoir Computing with Delayed Input for Fast and Easy Optimisation. Jaurigue L; Robertson E; Wolters J; Lüdge K Entropy (Basel); 2021 Nov; 23(12):. PubMed ID: 34945866 [TBL] [Abstract][Full Text] [Related]
14. A hybrid proper orthogonal decomposition and next generation reservoir computing approach for high-dimensional chaotic prediction: Application to flow-induced vibration of tube bundles. Liu T; Zhao X; Sun P; Zhou J Chaos; 2024 Mar; 34(3):. PubMed ID: 38490185 [TBL] [Abstract][Full Text] [Related]
15. Predicting the dynamical behaviors for chaotic semiconductor lasers by reservoir computing. Li XZ; Sheng B; Zhang M Opt Lett; 2022 Jun; 47(11):2822-2825. PubMed ID: 35648939 [TBL] [Abstract][Full Text] [Related]
16. Reconstructing bifurcation diagrams of chaotic circuits with reservoir computing. Luo H; Du Y; Fan H; Wang X; Guo J; Wang X Phys Rev E; 2024 Feb; 109(2-1):024210. PubMed ID: 38491568 [TBL] [Abstract][Full Text] [Related]
17. A systematic exploration of reservoir computing for forecasting complex spatiotemporal dynamics. Platt JA; Penny SG; Smith TA; Chen TC; Abarbanel HDI Neural Netw; 2022 Sep; 153():530-552. PubMed ID: 35839598 [TBL] [Abstract][Full Text] [Related]
18. Stochastic approach for assessing the predictability of chaotic time series using reservoir computing. Khovanov IA Chaos; 2021 Aug; 31(8):083105. PubMed ID: 34470249 [TBL] [Abstract][Full Text] [Related]
19. Constraining chaos: Enforcing dynamical invariants in the training of reservoir computers. Platt JA; Penny SG; Smith TA; Chen TC; Abarbanel HDI Chaos; 2023 Oct; 33(10):. PubMed ID: 37788385 [TBL] [Abstract][Full Text] [Related]