These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 36175591)

  • 1. Spontaneous gait phase synchronization of human to a wheeled mobile robot with replicating gait-induced upper body oscillating motion.
    Yagi S; Nakata Y; Nakamura Y; Ishiguro H
    Sci Rep; 2022 Sep; 12(1):16275. PubMed ID: 36175591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advances in Bipedal Walking Robots: Review of Gait, Drive, Sensors and Control Systems.
    Mikolajczyk T; Mikołajewska E; Al-Shuka HFN; Malinowski T; Kłodowski A; Pimenov DY; Paczkowski T; Hu F; Giasin K; Mikołajewski D; Macko M
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-Phase Joint-Angle Trajectory Generation Inspired by Dog Motion for Control of Quadruped Robot.
    Choi J
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Safe and Compliant Noncontact Interactive Approach for Wheeled Walking Aid Robot.
    Zhao D; Wang W; Okonkwo MC; Yang Z; Yang J; Liu H
    Comput Intell Neurosci; 2022; 2022():3033920. PubMed ID: 35341193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Foot placement modification for a biped humanoid robot with narrow feet.
    Hashimoto K; Hattori K; Otani T; Lim HO; Takanishi A
    ScientificWorldJournal; 2014; 2014():259570. PubMed ID: 24592154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imitation of Dynamic Walking With BSN for Humanoid Robot.
    Teachasrisaksakul K; Zhang ZQ; Yang GZ; Lo B
    IEEE J Biomed Health Inform; 2015 May; 19(3):794-802. PubMed ID: 25935051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pedestrian Navigation Method Based on Machine Learning and Gait Feature Assistance.
    Zhou Z; Yang S; Ni Z; Qian W; Gu C; Cao Z
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32164287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic robotics should be based on functional morphology.
    Witte H; Hoffmann H; Hackert R; Schilling C; Fischer MS; Preuschoft H
    J Anat; 2004 May; 204(5):331-42. PubMed ID: 15198698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An arm for a leg: Adapting a robotic arm for gait rehabilitation.
    Franchi G; Viereck U; Platt R; Yen SC; Hasson CJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3929-32. PubMed ID: 26737153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical analysis of the state of balance in bipedal walking.
    Firmani F; Park EJ
    J Biomech Eng; 2013 Apr; 135(4):041003. PubMed ID: 24231898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Get a grip: inward dactyl motions improve efficiency of sideways-walking gait for an amphibious crab-like robot.
    Graf NM; Grezmak JE; Daltorio KA
    Bioinspir Biomim; 2022 Oct; 17(6):. PubMed ID: 35926481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Poincare map based analysis of stroke patients' walking after a rehabilitation by a robot.
    Abedi M; Moghaddam MM; Fallah D
    Math Biosci; 2018 May; 299():73-84. PubMed ID: 29518402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Human Walking Balance Controller Based on COM-ZMP Model of Humanoid Robot.
    Yoshikawa T
    Front Robot AI; 2022; 9():757630. PubMed ID: 35280957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a Prototype Overground Pelvic Obliquity Support Robot for Rehabilitation of Hemiplegia Gait.
    Hwang S; Lee S; Shin D; Baek I; Ham S; Kim W
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gait and locomotion analysis of a soft-hybrid multi-legged modular miniature robot.
    Mahkam N; Özcan O
    Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34492650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zoomorphic Mobile Robot Development for Vertical Movement Based on the Geometrical Family Caterpillar.
    Attar H; Abu-Jassar AT; Yevsieiev V; Lyashenko V; Nevliudov I; Luhach AK
    Comput Intell Neurosci; 2022; 2022():3046116. PubMed ID: 35035455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Untethered-Bioinspired Quadrupedal Robot Based on Double-Chamber Pre-charged Pneumatic Soft Actuators with Highly Flexible Trunk.
    Li Y; Ren T; Li Y; Liu Q; Chen Y
    Soft Robot; 2021 Feb; 8(1):97-108. PubMed ID: 32522089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stable Heteroclinic Channel Networks for Physical Human-Humanoid Robot Collaboration.
    Brecelj T; Petrič T
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Minimalist analogue robot discovers animal-like walking gaits.
    Smith BJH; Usherwood JR
    Bioinspir Biomim; 2020 Feb; 15(2):026004. PubMed ID: 31869827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of gait support in patients with spinocerebellar degeneration by a wearable robot based on synchronization control.
    Tsukahara A; Yoshida K; Matsushima A; Ajima K; Kuroda C; Mizukami N; Hashimoto M
    J Neuroeng Rehabil; 2018 Sep; 15(1):84. PubMed ID: 30231916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.