These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 36175855)

  • 1. Aspergillus flavus YRB2 from Thymelaea hirsuta (L.) Endl., a non-aflatoxigenic endophyte with ability to overexpress defense-related genes against Fusarium root rot of maize.
    Rashad YM; Abdalla SA; Shehata AS
    BMC Microbiol; 2022 Sep; 22(1):229. PubMed ID: 36175855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eliciting transcriptomic and antioxidant defensive responses against Rhizoctonia root rot of sorghum using the endophyte Aspergillus oryzae YRA3.
    Rashad YM; Al Tami MS; Abdalla SA
    Sci Rep; 2023 Nov; 13(1):19823. PubMed ID: 37963959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endophytic
    Rashad YM; Abdalla SA; Sleem MM
    Plants (Basel); 2022 Aug; 11(15):. PubMed ID: 35956529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A protective endophyte of maize: Acremonium zeae antibiotics inhibitory to Aspergillus flavus and Fusarium verticillioides.
    Wicklow DT; Roth S; Deyrup ST; Gloer JB
    Mycol Res; 2005 May; 109(Pt 5):610-8. PubMed ID: 16018316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential of Novel Sequence Type of
    Tagele SB; Kim SW; Lee HG; Lee YS
    Int J Mol Sci; 2019 Feb; 20(5):. PubMed ID: 30813526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial endophytes inhabiting desert plants provide protection against seed rot caused by Fusarium verticillioides and promote growth in maize.
    Dinango VN; Dhouib H; Wakam LN; Kouokap LK; Youmbi DY; Eke P; Driss F; Tounsi S; Boyom FF; Frikha-Gargouri O
    Pest Manag Sci; 2024 Mar; 80(3):1206-1218. PubMed ID: 37886813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of
    Abdelaziz AM; El-Wakil DA; Attia MS; Ali OM; AbdElgawad H; Hashem AH
    J Fungi (Basel); 2022 May; 8(5):. PubMed ID: 35628738
    [No Abstract]   [Full Text] [Related]  

  • 8. Evaluating the Biocontrol Efficacy and Antioxidant Potential of Phellinus caribaeo-quercicola-A First Report Dual-Action Endophyte From Inula racemosa Hook. F.
    Majid M; Wani AH; Ganai BA
    J Basic Microbiol; 2024 Aug; 64(8):e2400080. PubMed ID: 39031570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclopiazonic Acid Is a Pathogenicity Factor for Aspergillus flavus and a Promising Target for Screening Germplasm for Ear Rot Resistance.
    Chalivendra SC; DeRobertis C; Chang PK; Damann KE
    Mol Plant Microbe Interact; 2017 May; 30(5):361-373. PubMed ID: 28447887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of Aspergillus flavus growth and aflatoxin production in transgenic maize kernels expressing a tachyplesin-derived synthetic peptide, AGM182.
    Rajasekaran K; Sayler RJ; Sickler CM; Majumdar R; Jaynes JM; Cary JW
    Plant Sci; 2018 May; 270():150-156. PubMed ID: 29576068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution, Genetic Diversity and Biocontrol of Aflatoxigenic
    Vlajkov V; Grahovac M; Budakov D; Loc M; Pajčin I; Milić D; Novaković T; Grahovac J
    Toxins (Basel); 2021 Sep; 13(10):. PubMed ID: 34678980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fungal endophytes of turmeric (Curcuma longa L.) and their biocontrol potential against pathogens Pythium aphanidermatum and Rhizoctonia solani.
    Vinayarani G; Prakash HS
    World J Microbiol Biotechnol; 2018 Mar; 34(3):49. PubMed ID: 29541936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and competitive ability of non-aflatoxigenic Aspergillus flavus isolated from the maize agro-ecosystem in Argentina as potential aflatoxin biocontrol agents.
    Alaniz Zanon MS; Clemente MP; Chulze SN
    Int J Food Microbiol; 2018 Jul; 277():58-63. PubMed ID: 29684766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seed Biopriming with Microbial Inoculant Triggers Local and Systemic Defense Responses against
    Singh S; Singh UB; Malviya D; Paul S; Sahu PK; Trivedi M; Paul D; Saxena AK
    Int J Environ Res Public Health; 2020 Feb; 17(4):. PubMed ID: 32098185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Management of Black Root Disease-Causing Fungus Fusarium solani CRP1 by Endophytic Bacillus siamensis CNE6 through Its Metabolites and Activation of Plant Defense Genes.
    Gorai PS; Ghosh R; Ghosh S; Samanta S; Sen A; Panja S; Gond SK; Mandal NC
    Microbiol Spectr; 2023 Feb; 11(2):e0308222. PubMed ID: 36744908
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Rashad YM; El-Sharkawy HHA; Elazab NT
    J Fungi (Basel); 2022 Mar; 8(3):. PubMed ID: 35330270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of maize root diseases caused by Macrophomina phaseolina, Fusarium moniliforme and Fusarium graminearum by plant growth promoting rhizobacteria.
    Pal KK; Tilak KV; Saxena AK; Dey R; Singh CS
    Microbiol Res; 2001; 156(3):209-23. PubMed ID: 11716210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decoding the Plant Growth Promotion and Antagonistic Potential of Bacterial Endophytes From
    Gupta S; Pandey S; Sharma S
    Front Plant Sci; 2022; 13():813686. PubMed ID: 35237287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Vitro and in Field Response of Different Fungicides against
    Masiello M; Somma S; Ghionna V; Logrieco AF; Moretti A
    Toxins (Basel); 2019 Jan; 11(1):. PubMed ID: 30609646
    [No Abstract]   [Full Text] [Related]  

  • 20. Biocontrol potential of endophytic fungi against phytopathogenic nematodes on potato (Solanum tuberosum L.).
    Ghareeb RY; Jaremko M; Abdelsalam NR; Abdelhamid MMA; El-Argawy E; Ghozlan MH
    Sci Rep; 2024 Jul; 14(1):15547. PubMed ID: 38969662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.