These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 36176070)

  • 21. Improving the noninvasive classification of glioma genetic subtype with deep learning and diffusion-weighted imaging.
    Cluceru J; Interian Y; Phillips JJ; Molinaro AM; Luks TL; Alcaide-Leon P; Olson MP; Nair D; LaFontaine M; Shai A; Chunduru P; Pedoia V; Villanueva-Meyer JE; Chang SM; Lupo JM
    Neuro Oncol; 2022 Apr; 24(4):639-652. PubMed ID: 34653254
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Using radiomics based on multicenter magnetic resonance images to predict isocitrate dehydrogenase mutation status of gliomas.
    Liu Y; Zheng Z; Wang Z; Qian X; Yao Z; Cheng C; Zhou Z; Gao F; Dai Y
    Quant Imaging Med Surg; 2023 Apr; 13(4):2143-2155. PubMed ID: 37064376
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of IDH and TERT promoter mutations in low-grade glioma from magnetic resonance images using a convolutional neural network.
    Fukuma R; Yanagisawa T; Kinoshita M; Shinozaki T; Arita H; Kawaguchi A; Takahashi M; Narita Y; Terakawa Y; Tsuyuguchi N; Okita Y; Nonaka M; Moriuchi S; Takagaki M; Fujimoto Y; Fukai J; Izumoto S; Ishibashi K; Nakajima Y; Shofuda T; Kanematsu D; Yoshioka E; Kodama Y; Mano M; Mori K; Ichimura K; Kanemura Y; Kishima H
    Sci Rep; 2019 Dec; 9(1):20311. PubMed ID: 31889117
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diagnostic accuracy and potential covariates for machine learning to identify IDH mutations in glioma patients: evidence from a meta-analysis.
    Zhao J; Huang Y; Song Y; Xie D; Hu M; Qiu H; Chu J
    Eur Radiol; 2020 Aug; 30(8):4664-4674. PubMed ID: 32193643
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Radiomics risk score may be a potential imaging biomarker for predicting survival in isocitrate dehydrogenase wild-type lower-grade gliomas.
    Park CJ; Han K; Kim H; Ahn SS; Choi YS; Park YW; Chang JH; Kim SH; Jain R; Lee SK
    Eur Radiol; 2020 Dec; 30(12):6464-6474. PubMed ID: 32740813
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomics.
    Choi YS; Bae S; Chang JH; Kang SG; Kim SH; Kim J; Rim TH; Choi SH; Jain R; Lee SK
    Neuro Oncol; 2021 Feb; 23(2):304-313. PubMed ID: 32706862
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Value of Enhanced MR Radiomics in Estimating the IDH1 Genotype in High-Grade Gliomas.
    Niu L; Feng WH; Duan CF; Liu YC; Liu JH; Liu XJ
    Biomed Res Int; 2020; 2020():4630218. PubMed ID: 33163535
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genotype prediction of ATRX mutation in lower-grade gliomas using an MRI radiomics signature.
    Li Y; Liu X; Qian Z; Sun Z; Xu K; Wang K; Fan X; Zhang Z; Li S; Wang Y; Jiang T
    Eur Radiol; 2018 Jul; 28(7):2960-2968. PubMed ID: 29404769
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Noninvasive Prediction of IDH1 Mutation and ATRX Expression Loss in Low-Grade Gliomas Using Multiparametric MR Radiomic Features.
    Ren Y; Zhang X; Rui W; Pang H; Qiu T; Wang J; Xie Q; Jin T; Zhang H; Chen H; Zhang Y; Lu H; Yao Z; Zhang J; Feng X
    J Magn Reson Imaging; 2019 Mar; 49(3):808-817. PubMed ID: 30194745
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lesion location implemented magnetic resonance imaging radiomics for predicting IDH and TERT promoter mutations in grade II/III gliomas.
    Arita H; Kinoshita M; Kawaguchi A; Takahashi M; Narita Y; Terakawa Y; Tsuyuguchi N; Okita Y; Nonaka M; Moriuchi S; Takagaki M; Fujimoto Y; Fukai J; Izumoto S; Ishibashi K; Nakajima Y; Shofuda T; Kanematsu D; Yoshioka E; Kodama Y; Mano M; Mori K; Ichimura K; Kanemura Y
    Sci Rep; 2018 Aug; 8(1):11773. PubMed ID: 30082856
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting isocitrate dehydrogenase status among adult patients with diffuse glioma using patient characteristics, radiomic features, and magnetic resonance imaging: Multi-modal analysis by variable vision transformer.
    Usuzaki T; Inamori R; Shizukuishi T; Morishita Y; Takagi H; Ishikuro M; Obara T; Takase K
    Magn Reson Imaging; 2024 Sep; 111():266-276. PubMed ID: 38815636
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of Genetic Profiles and Prognosis of High-Grade Gliomas Using Quantitative and Qualitative MRI Features: A Focus on G3 Gliomas.
    Hong EK; Choi SH; Shin DJ; Jo SW; Yoo RE; Kang KM; Yun TJ; Kim JH; Sohn CH; Park SH; Won JK; Kim TM; Park CK; Kim IH; Lee ST
    Korean J Radiol; 2021 Feb; 22(2):233-242. PubMed ID: 32932560
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting IDH subtype of grade 4 astrocytoma and glioblastoma from tumor radiomic patterns extracted from multiparametric magnetic resonance images using a machine learning approach.
    Kandalgaonkar P; Sahu A; Saju AC; Joshi A; Mahajan A; Thakur M; Sahay A; Epari S; Sinha S; Dasgupta A; Chatterjee A; Shetty P; Moiyadi A; Agarwal J; Gupta T; Goda JS
    Front Oncol; 2022; 12():879376. PubMed ID: 36276136
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diagnostic Performance of [
    Nakajo K; Uda T; Kawashima T; Terakawa Y; Ishibashi K; Tsuyuguchi N; Tanoue Y; Nagahama A; Uda H; Koh S; Sasaki T; Ohata K; Kanemura Y; Goto T
    World Neurosurg; 2021 Apr; 148():e471-e481. PubMed ID: 33444827
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automated apparent diffusion coefficient analysis for genotype prediction in lower grade glioma: association with the T2-FLAIR mismatch sign.
    Aliotta E; Dutta SW; Feng X; Tustison NJ; Batchala PP; Schiff D; Lopes MB; Jain R; Druzgal TJ; Mukherjee S; Patel SH
    J Neurooncol; 2020 Sep; 149(2):325-335. PubMed ID: 32909115
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Qualitative and Quantitative MRI Analysis in IDH1 Genotype Prediction of Lower-Grade Gliomas: A Machine Learning Approach.
    Cao M; Suo S; Zhang X; Wang X; Xu J; Yang W; Zhou Y
    Biomed Res Int; 2021; 2021():1235314. PubMed ID: 33553421
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Use of telomerase promoter mutations to mark specific molecular subsets with reciprocal clinical behavior in IDH mutant and IDH wild-type diffuse gliomas.
    Akyerli CB; Yüksel Ş; Can Ö; Erson-Omay EZ; Oktay Y; Coşgun E; Ülgen E; Erdemgil Y; Sav A; von Deimling A; Günel M; Yakıcıer MC; Pamir MN; Özduman K
    J Neurosurg; 2018 Apr; 128(4):1102-1114. PubMed ID: 28621624
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of IDH and TERTp mutations using dynamic susceptibility contrast MRI with deep learning in 162 gliomas.
    Buz-Yalug B; Turhan G; Cetin AI; Dindar SS; Danyeli AE; Yakicier C; Pamir MN; Özduman K; Dincer A; Ozturk-Isik E
    Eur J Radiol; 2024 Jan; 170():111257. PubMed ID: 38134710
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predicting Isocitrate Dehydrogenase (IDH) Mutation Status in Gliomas Using Multiparameter MRI Radiomics Features.
    Peng H; Huo J; Li B; Cui Y; Zhang H; Zhang L; Ma L
    J Magn Reson Imaging; 2021 May; 53(5):1399-1407. PubMed ID: 33179832
    [TBL] [Abstract][Full Text] [Related]  

  • 40. World Health Organization Grade II/III Glioma Molecular Status: Prediction by MRI Morphologic Features and Apparent Diffusion Coefficient.
    Maynard J; Okuchi S; Wastling S; Busaidi AA; Almossawi O; Mbatha W; Brandner S; Jaunmuktane Z; Koc AM; Mancini L; Jäger R; Thust S
    Radiology; 2020 Jul; 296(1):111-121. PubMed ID: 32315266
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.