These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36176074)

  • 1. Real-Time Free Space Semantic Segmentation for Detection of Traversable Space for an Intelligent Wheelchair
    Messiou C; Fusaro D; Beraldo G; Tonin L
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geospatial assistive technologies: potential usability criteria identified from manual wheelchair users.
    Prémont MÉ; Vincent C; Mostafavi MA
    Disabil Rehabil Assist Technol; 2020 Nov; 15(8):844-855. PubMed ID: 31226889
    [No Abstract]   [Full Text] [Related]  

  • 3. Vision-Based Real-Time Traversable Region Detection for Mobile Robot in the Outdoors.
    Deng F; Zhu X; He C
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28902180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Supervised Sidewalk Perception Using Fast Video Semantic Segmentation for Robotic Wheelchairs in Smart Mobility.
    Pradeep V; Khemmar R; Lecrosnier L; Duchemin Y; Rossi R; Decoux B
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An autonomous wheelchair with health monitoring system based on Internet of Thing.
    Hou L; Latif J; Mehryar P; Withers S; Plastropoulos A; Shen L; Ali Z
    Sci Rep; 2024 Mar; 14(1):5878. PubMed ID: 38467735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The future of the provision process for mobility assistive technology: a survey of providers.
    Dicianno BE; Joseph J; Eckstein S; Zigler CK; Quinby EJ; Schmeler MR; Schein RM; Pearlman J; Cooper RA
    Disabil Rehabil Assist Technol; 2019 May; 14(4):338-345. PubMed ID: 29557196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time performance of a hands-free semi-autonomous wheelchair system using a combination of stereoscopic and spherical vision.
    Nguyen JS; Nguyen TN; Tran Y; Su SW; Craig A; Nguyen HT
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3069-72. PubMed ID: 23366573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vision based interface system for hands free control of an Intelligent Wheelchair.
    Ju JS; Shin Y; Kim EY
    J Neuroeng Rehabil; 2009 Aug; 6():33. PubMed ID: 19660132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a Bayesian recursive algorithm to find free-spaces for an intelligent wheelchair.
    Nguyen AV; Su S; Nguyen HT
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7250-3. PubMed ID: 22256012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A facial expression controlled wheelchair for people with disabilities.
    Rabhi Y; Mrabet M; Fnaiech F
    Comput Methods Programs Biomed; 2018 Oct; 165():89-105. PubMed ID: 30337084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semi-autonomous wheelchair system using stereoscopic cameras.
    Nguyen JS; Nguyen TH; Nguyen HT
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5068-71. PubMed ID: 19964855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and validation of an intelligent wheelchair towards a clinically-functional outcome.
    Boucher P; Atrash A; Kelouwani S; Honoré W; Nguyen H; Villemure J; Routhier F; Cohen P; Demers L; Forget R; Pineau J
    J Neuroeng Rehabil; 2013 Jun; 10(1):58. PubMed ID: 23773851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autonomous assistance navigation for robotic wheelchairs in confined spaces.
    Cheein FA; Carelli R; De la Cruz C; Muller S; Bastos Filho TF
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():503-6. PubMed ID: 21095654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Traversable Region Detection and Tracking for a Sparse 3D Laser Scanner for Off-Road Environments Using Range Images.
    An J
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geospatial assistive technologies for wheelchair users: a scoping review of usability measures and criteria for mobile user interfaces and their potential applicability.
    Prémont MÉ; Vincent C; Mostafavi MA; Routhier F
    Disabil Rehabil Assist Technol; 2020 Feb; 15(2):119-131. PubMed ID: 30663444
    [No Abstract]   [Full Text] [Related]  

  • 16. Using machine learning to blend human and robot controls for assisted wheelchair navigation.
    Goil A; Derry M; Argall BD
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650454. PubMed ID: 24187271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probabilistic vs linear blending approaches to shared control for wheelchair driving.
    Ezeh C; Trautman P; Devigne L; Bureau V; Babel M; Carlson T
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():835-840. PubMed ID: 28813924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Weakly-Supervised Recommended Traversable Area Segmentation Using Automatically Labeled Images for Autonomous Driving in Pedestrian Environment with No Edges.
    Onozuka Y; Matsumi R; Shino M
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33435464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Control to Improve Navigation and Manipulation of Power Wheelchairs.
    Carey SL; Aguirrezabal A; Sundarrao S; Alqasemi R; Dubey R
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():945-948. PubMed ID: 30440546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cheap or Robust? The practical realization of self-driving wheelchair technology.
    Burhanpurkar M; Labbe M; Guan C; Michaud F; Kelly J
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1079-1086. PubMed ID: 28813965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.