These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36176100)

  • 21. Integration of proprioception in upper limb prostheses through non-invasive strategies: a review.
    Papaleo ED; D'Alonzo M; Fiori F; Piombino V; Falato E; Pilato F; De Liso A; Di Lazzaro V; Di Pino G
    J Neuroeng Rehabil; 2023 Sep; 20(1):118. PubMed ID: 37689701
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Object stiffness recognition using haptic feedback delivered through transcutaneous proximal nerve stimulation.
    Vargas L; Shin H; Huang HH; Zhu Y; Hu X
    J Neural Eng; 2019 Dec; 17(1):016002. PubMed ID: 31610530
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Perception and Performance of Electrical Stimulation for Proprioception.
    Blondin CM; Ivanova E; Eden J; Burdet E
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4550-4554. PubMed ID: 34892229
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Myocontrol is closed-loop control: incidental feedback is sufficient for scaling the prosthesis force in routine grasping.
    Markovic M; Schweisfurth MA; Engels LF; Farina D; Dosen S
    J Neuroeng Rehabil; 2018 Sep; 15(1):81. PubMed ID: 30176929
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advantages of externally powered prosthesis with feedback system using pseudo-cineplasty.
    Nambu S; Ikebuchi M; Taniguchi M; Park CS; Kitagawa T; Nakajima S; Koike T
    J Rehabil Res Dev; 2014; 51(7):1095-102. PubMed ID: 25436660
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Haptic feedback system for postural adaptation during robotic rehabilitation of upper limb.
    Agarwal R; Hussain A; Skm V; Campolo D
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176132
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neuromimetic Event-Based Detection for Closed-Loop Tactile Feedback Control of Upper Limb Prostheses.
    Osborn L; Kaliki R; Soares A; Thakor N
    IEEE Trans Haptics; 2016; 9(2):196-206. PubMed ID: 27777640
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Soft Wearable Skin-Stretch Device for Haptic Feedback Using Twisted and Coiled Polymer Actuators.
    Chossat JB; Chen DKY; Park YL; Shull PB
    IEEE Trans Haptics; 2019; 12(4):521-532. PubMed ID: 31562105
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent Developments in Prosthesis Sensors, Texture Recognition, and Sensory Stimulation for Upper Limb Prostheses.
    Masteller A; Sankar S; Kim HB; Ding K; Liu X; All AH
    Ann Biomed Eng; 2021 Jan; 49(1):57-74. PubMed ID: 33140242
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Can Wearable Haptic Devices Foster the Embodiment of Virtual Limbs?
    Frohner J; Salvietti G; Beckerle P; Prattichizzo D
    IEEE Trans Haptics; 2019; 12(3):339-349. PubMed ID: 30582554
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multi-Sensory Stimuli Improve Distinguishability of Cutaneous Haptic Cues.
    Sullivan JL; Dunkelberger N; Bradley J; Young J; Israr A; Lau F; Klumb K; Abnousi F; O'Malley MK
    IEEE Trans Haptics; 2020; 13(2):286-297. PubMed ID: 31217130
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation of rotational skin stretch for proprioceptive feedback with application to myoelectric systems.
    Wheeler J; Bark K; Savall J; Cutkosky M
    IEEE Trans Neural Syst Rehabil Eng; 2010 Feb; 18(1):58-66. PubMed ID: 20071271
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Haptic feedback from manual contact improves balance control in people with Parkinson's disease.
    Rabin E; Chen J; Muratori L; DiFrancisco-Donoghue J; Werner WG
    Gait Posture; 2013 Jul; 38(3):373-9. PubMed ID: 23313411
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proprioceptive Training with Visual Feedback Improves Upper Limb Function in Stroke Patients: A Pilot Study.
    He J; Li C; Lin J; Shu B; Ye B; Wang J; Lin Y; Jia J
    Neural Plast; 2022; 2022():1588090. PubMed ID: 35075359
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Consumer design priorities for upper limb prosthetics.
    Biddiss E; Beaton D; Chau T
    Disabil Rehabil Assist Technol; 2007 Nov; 2(6):346-57. PubMed ID: 19263565
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploring Silicone Rubber Skin with Embedded Customizable Shape Capacitive Sensors to Enable Haptic Capabilities on Upper Limb Prosthetics.
    Aqueveque P; Germany E; Pastene F; Osorio R
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4241-4244. PubMed ID: 36086282
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Haptic Training: Which Types Facilitate (re)Learning of Which Motor Task and for Whom? Answers by a Review.
    Basalp E; Wolf P; Marchal-Crespo L
    IEEE Trans Haptics; 2021; 14(4):722-739. PubMed ID: 34388095
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Haptic Neurorehabilitation and Virtual Reality for Upper Limb Paralysis: A Review.
    Piggott L; Wagner S; Ziat M
    Crit Rev Biomed Eng; 2016; 44(1-2):1-32. PubMed ID: 27652449
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Haptic wearables as sensory replacement, sensory augmentation and trainer - a review.
    Shull PB; Damian DD
    J Neuroeng Rehabil; 2015 Jul; 12():59. PubMed ID: 26188929
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sensory Feedback for Upper-Limb Prostheses: Opportunities and Barriers.
    Jabban L; Dupan S; Zhang D; Ainsworth B; Nazarpour K; Metcalfe BW
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():738-747. PubMed ID: 35290188
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.