These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 36176108)

  • 1. Improving Ankle Muscle Recruitment via Plantar Pressure Biofeedback during Robot Resisted Gait Training in Cerebral Palsy.
    Conner BC; Lerner ZF
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive Ankle Resistance from a Wearable Robotic Device to Improve Muscle Recruitment in Cerebral Palsy.
    Conner BC; Luque J; Lerner ZF
    Ann Biomed Eng; 2020 Apr; 48(4):1309-1321. PubMed ID: 31950309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility evaluation of a dual-mode ankle exoskeleton to assist and restore community ambulation in older adults.
    Fang Y; Harshe K; Franz JR; Lerner ZF
    Wearable Technol; 2022; 3():. PubMed ID: 36404993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Under pressure: design and validation of a pressure-sensitive insole for ankle plantar flexion biofeedback during neuromuscular gait training.
    Conner BC; Fang Y; Lerner ZF
    J Neuroeng Rehabil; 2022 Dec; 19(1):135. PubMed ID: 36482447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Battery-Powered Ankle Exoskeleton Improves Gait Mechanics in a Feasibility Study of Individuals with Cerebral Palsy.
    Lerner ZF; Harvey TA; Lawson JL
    Ann Biomed Eng; 2019 Jun; 47(6):1345-1356. PubMed ID: 30825030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility of Augmenting Ankle Exoskeleton Walking Performance With Step Length Biofeedback in Individuals With Cerebral Palsy.
    Fang Y; Lerner ZF
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():442-449. PubMed ID: 33523814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ankle dorsiflexor function after plantar flexor surgery in children with cerebral palsy.
    Davids JR; Rogozinski BM; Hardin JW; Davis RB
    J Bone Joint Surg Am; 2011 Dec; 93(23):e1381-7. PubMed ID: 22159860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of biofeedback treatment on gait in children with cerebral palsy.
    Dursun E; Dursun N; Alican D
    Disabil Rehabil; 2004 Jan; 26(2):116-20. PubMed ID: 14668149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does Ankle Exoskeleton Assistance Impair Stability During Walking in Individuals with Cerebral Palsy?
    Harvey TA; Conner BC; Lerner ZF
    Ann Biomed Eng; 2021 Sep; 49(9):2522-2532. PubMed ID: 34189633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency.
    Sawicki GS; Ferris DP
    J Exp Biol; 2009 Jan; 212(Pt 1):21-31. PubMed ID: 19088207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pilot evaluation of changes in motor control after wearable robotic resistance training in children with cerebral palsy.
    Conner BC; Schwartz MH; Lerner ZF
    J Biomech; 2021 Sep; 126():110601. PubMed ID: 34332214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical application of a robotic ankle training program for cerebral palsy compared to the research laboratory application: does it translate to practice?
    Sukal-Moulton T; Clancy T; Zhang LQ; Gaebler-Spira D
    Arch Phys Med Rehabil; 2014 Aug; 95(8):1433-40. PubMed ID: 24792141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wearable Biofeedback Improves Human-Robot Compliance during Ankle-Foot Exoskeleton-Assisted Gait Training: A Pre-Post Controlled Study in Healthy Participants.
    Pinheiro C; Figueiredo J; Magalhães N; Santos CP
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33080845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electromyographic biofeedback-driven gaming to alter calf muscle activation during gait in children with spastic cerebral palsy.
    Flux E; Bar-On L; Buizer AI; Harlaar J; van der Krogt MM
    Gait Posture; 2023 May; 102():10-17. PubMed ID: 36870265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Preliminary study of robot-assisted ankle rehabilitation for children with cerebral palsy].
    Wang RL; Zhou ZH; Xi YC; Wang QN; Wang NH; Huang Z
    Beijing Da Xue Xue Bao Yi Xue Ban; 2018 Apr; 50(2):207-212. PubMed ID: 29643516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive ankle exoskeleton gait training demonstrates acute neuromuscular and spatiotemporal benefits for individuals with cerebral palsy: A pilot study.
    Fang Y; Orekhov G; Lerner ZF
    Gait Posture; 2022 Jun; 95():256-263. PubMed ID: 33248858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ankle Exoskeleton Assistance Can Improve Over-Ground Walking Economy in Individuals With Cerebral Palsy.
    Orekhov G; Fang Y; Luque J; Lerner ZF
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):461-467. PubMed ID: 31940542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude.
    Kao PC; Lewis CL; Ferris DP
    J Neuroeng Rehabil; 2010 Jul; 7():33. PubMed ID: 20659331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of sensory feedback to plantar flexor muscle activation during push-off in adults with cerebral palsy.
    Frisk RF; Jensen P; Kirk H; Bouyer LJ; Lorentzen J; Nielsen JB
    J Neurophysiol; 2017 Dec; 118(6):3165-3174. PubMed ID: 28904105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.