These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 36176111)

  • 1. Identifying Interaction Forces Via EMG Under Changing Motion Dynamics.
    Stanbury TK; Alfaro JGC; Chinchalkar S; Trejos AL
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elbow joint angle and elbow movement velocity estimation using NARX-multiple layer perceptron neural network model with surface EMG time domain parameters.
    Raj R; Sivanandan KS
    J Back Musculoskelet Rehabil; 2017; 30(3):515-525. PubMed ID: 27858692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility of using EMG driven neuromusculoskeletal model for prediction of dynamic movement of the elbow.
    Koo TK; Mak AF
    J Electromyogr Kinesiol; 2005 Feb; 15(1):12-26. PubMed ID: 15642650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compensation for interaction torques during single- and multijoint limb movement.
    Gribble PL; Ostry DJ
    J Neurophysiol; 1999 Nov; 82(5):2310-26. PubMed ID: 10561408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human joint motion estimation for electromyography (EMG)-based dynamic motion control.
    Zhang Q; Hosoda R; Venture G
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():21-4. PubMed ID: 24109614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance Evaluation of EEG/EMG Fusion Methods for Motion Classification.
    Tryon J; Friedman E; Trejos AL
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():971-976. PubMed ID: 31374755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of movement of an elbow joint with a wearable robotic exoskeleton Using OpenSim software.
    Noei V; Lakany H
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4342-4345. PubMed ID: 36086238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuromuscular interfacing: establishing an EMG-driven model for the human elbow joint.
    Pau JW; Xie SS; Pullan AJ
    IEEE Trans Biomed Eng; 2012 Sep; 59(9):2586-93. PubMed ID: 22911536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shoulder muscle activation pattern recognition based on sEMG and machine learning algorithms.
    Jiang Y; Chen C; Zhang X; Chen C; Zhou Y; Ni G; Muh S; Lemos S
    Comput Methods Programs Biomed; 2020 Dec; 197():105721. PubMed ID: 32882593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using recurrent artificial neural network model to estimate voluntary elbow torque in dynamic situations.
    Song R; Tong KY
    Med Biol Eng Comput; 2005 Jul; 43(4):473-80. PubMed ID: 16255429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of Forearm sEMG Signals with IMU Sensors for Trajectory Planning and Control of Assistive Robotic Arm.
    Schabron B; Reust A; Desai J; Yihun Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5274-5277. PubMed ID: 31947047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of isometric contractions based on High Density EMG maps.
    Rojas-Martínez M; Mañanas MA; Alonso JF; Merletti R
    J Electromyogr Kinesiol; 2013 Feb; 23(1):33-42. PubMed ID: 22819519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multijoint muscle regulation mechanisms examined by measured human arm stiffness and EMG signals.
    Osu R; Gomi H
    J Neurophysiol; 1999 Apr; 81(4):1458-68. PubMed ID: 10200182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of dynamic joint torques and trajectory formation from surface electromyography signals using a neural network model.
    Koike Y; Kawato M
    Biol Cybern; 1995 Sep; 73(4):291-300. PubMed ID: 7578470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developing a Method to Control an Arm-Assist-Suit by Predicting Arm-Trajectory Using Electromyography.
    Tanaka T; Nambu I; Wada Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4882-4885. PubMed ID: 33019083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EMG responses to load perturbations of the upper limb: effect of dynamic coupling between shoulder and elbow motion.
    Lacquaniti F; Soechting JF
    Exp Brain Res; 1986; 61(3):482-96. PubMed ID: 3956610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements.
    Kawase T; Sakurada T; Koike Y; Kansaku K
    J Neural Eng; 2017 Feb; 14(1):016015. PubMed ID: 28068293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EMG pattern classification to control a hand orthosis for functional grasp assistance after stroke.
    Meeker C; Park S; Bishop L; Stein J; Ciocarlie M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1203-1210. PubMed ID: 28813985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effectiveness of stretch-shortening cycling in upper-limb extensor muscles during elite cross-country skiing with the double-poling technique.
    Zoppirolli C; Holmberg HC; Pellegrini B; Quaglia D; Bortolan L; Schena F
    J Electromyogr Kinesiol; 2013 Dec; 23(6):1512-9. PubMed ID: 24064180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive Control of Exoskeleton Robots for Periodic Assistive Behaviours Based on EMG Feedback Minimisation.
    Peternel L; Noda T; Petrič T; Ude A; Morimoto J; Babič J
    PLoS One; 2016; 11(2):e0148942. PubMed ID: 26881743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.