These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36176123)

  • 1. Design and feasibility of the T-GRIP thumb exoskeleton to support the lateral pinch grasp of spinal cord injury patients.
    Haarman CJW; Hekman EEG; Maas EM; Rietman JS; Van Der Kooij H
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and assessment of a hand assist device: GRIPIT.
    Kim B; In H; Lee DY; Cho KJ
    J Neuroeng Rehabil; 2017 Feb; 14(1):15. PubMed ID: 28222759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Home-based rehabilitation using a soft robotic hand glove device leads to improvement in hand function in people with chronic spinal cord injury:a pilot study.
    Osuagwu BAC; Timms S; Peachment R; Dowie S; Thrussell H; Cross S; Shirley R; Segura-Fragoso A; Taylor J
    J Neuroeng Rehabil; 2020 Mar; 17(1):40. PubMed ID: 32138780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying Tenodesis Hand Function in Cervical Spinal Cord Injury: Implications for Function.
    Pripotnev S; Bruce J; Novak CB; Kennedy CR; Fox IK
    J Hand Surg Am; 2023 Jul; 48(7):700-710. PubMed ID: 37191601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a spring-assisted exoskeleton module for wrist and hand rehabilitation.
    Perry JC; Trimble S; Castilho Machado LG; Schroeder JS; Belloso A; Rodriguez-de-Pablo C; Keller T
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():594-597. PubMed ID: 28268400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single degree-of-freedom exoskeleton mechanism design for finger rehabilitation.
    Wolbrecht ET; Reinkensmeyer DJ; Perez-Gracia A
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975427. PubMed ID: 22275628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robot-Assisted Training of Arm and Hand Movement Shows Functional Improvements for Incomplete Cervical Spinal Cord Injury.
    Francisco GE; Yozbatiran N; Berliner J; OʼMalley MK; Pehlivan AU; Kadivar Z; Fitle K; Boake C
    Am J Phys Med Rehabil; 2017 Oct; 96(10 Suppl 1):S171-S177. PubMed ID: 28857769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HandMATE: Wearable Robotic Hand Exoskeleton and Integrated Android App for At Home Stroke Rehabilitation.
    Sandison M; Phan K; Casas R; Nguyen L; Lum M; Pergami-Peries M; Lum PS
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4867-4872. PubMed ID: 33019080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robotic Hand-Assisted Training for Spinal Cord Injury Driven by Myoelectric Pattern Recognition: A Case Report.
    Lu Z; Tong KY; Shin H; Stampas A; Zhou P
    Am J Phys Med Rehabil; 2017 Oct; 96(10 Suppl 1):S146-S149. PubMed ID: 28704209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using a 3D-Printed Hand Orthosis to Improve Three-Jaw Chuck Hand Function in Individuals With Cervical Spinal Cord Injury: A Feasibility Study.
    Yeh PC; Chen CH; Chen CS
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2552-2559. PubMed ID: 37159308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical design and feasibility of a finger exoskeleton to support finger extension of severely affected stroke patients.
    Haarman CJW; Hekman EEG; Rietman JS; Van Der Kooij H
    IEEE Trans Neural Syst Rehabil Eng; 2023 Feb; PP():. PubMed ID: 37022826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase-dependent deficits during reach-to-grasp after human spinal cord injury.
    Lei Y; Perez MA
    J Neurophysiol; 2018 Jan; 119(1):251-261. PubMed ID: 28931614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a compliant, stabilizing wrist mechanism for a pediatric hand exoskeleton.
    Dittli J; Vasileiou C; Asanovski H; Lieber J; Lin JB; Meyer-Heim A; Van Hedel HJA; Gassert R; Lambercy O
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstruction of the thumb in tetraplegia following spinal cord injury.
    House JH
    Clin Orthop Relat Res; 1985 May; (195):117-28. PubMed ID: 3978944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a parametric kinematic model of the human hand and a novel robotic exoskeleton.
    Burton TM; Vaidyanathan R; Burgess SC; Turton AJ; Melhuish C
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975344. PubMed ID: 22275549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Compact and Lightweight Rehabilitative Exoskeleton to Restore Grasping Functions for People with Hand Paralysis.
    Nazari V; Pouladian M; Zheng YP; Alam M
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Restoration of strong grasp and lateral pinch in tetraplegia due to cervical spinal cord injury.
    House JH; Gwathmey FW; Lundsgaard DK
    J Hand Surg Am; 1976 Sep; 1(2):152-9. PubMed ID: 1018080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A prospective evaluation of upper extremity tendon transfers in children with cervical spinal cord injury.
    Mulcahey MJ; Betz RR; Smith BT; Weiss AA
    J Pediatr Orthop; 1999; 19(3):319-28. PubMed ID: 10344314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A pediatric robotic thumb exoskeleton for at-home rehabilitation: the Isolated Orthosis for Thumb Actuation (IOTA).
    Aubin PM; Sallum H; Walsh C; Stirling L; Correia A
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650500. PubMed ID: 24187315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finger control in the tripod grasp.
    Gentilucci M; Caselli L; Secchi C
    Exp Brain Res; 2003 Apr; 149(3):351-60. PubMed ID: 12632237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.