These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 36176138)

  • 1. Stair Recognition for Robotic Exoskeleton Control using Computer Vision and Deep Learning.
    Kurbis AG; Laschowski B; Mihailidis A
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer Vision and Deep Learning for Environment-Adaptive Control of Robotic Lower-Limb Exoskeletons.
    Laschowski B; McNally W; Wong A; McPhee J
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4631-4635. PubMed ID: 34892246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environment Classification for Robotic Leg Prostheses and Exoskeletons Using Deep Convolutional Neural Networks.
    Laschowski B; McNally W; Wong A; McPhee J
    Front Neurorobot; 2021; 15():730965. PubMed ID: 35185507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. StairNet: visual recognition of stairs for human-robot locomotion.
    Kurbis AG; Kuzmenko D; Ivanyuk-Skulskiy B; Mihailidis A; Laschowski B
    Biomed Eng Online; 2024 Feb; 23(1):20. PubMed ID: 38360664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preliminary Design of an Environment Recognition System for Controlling Robotic Lower-Limb Prostheses and Exoskeletons.
    Laschowski B; McNally W; Wong A; McPhee J
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():868-873. PubMed ID: 31374739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subject-Independent Continuous Locomotion Mode Classification for Robotic Hip Exoskeleton Applications.
    Kang I; Molinaro DD; Choi G; Camargo J; Young AJ
    IEEE Trans Biomed Eng; 2022 Oct; 69(10):3234-3242. PubMed ID: 35389859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Method of Detecting Human Movement Intentions in Real Environments.
    Liu YX; Wan ZY; Wang R; Gutierrez-Farewik EM
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Obstacle Recognition using Computer Vision and Convolutional Neural Networks for Powered Prosthetic Leg Applications.
    Novo-Torres L; Ramirez-Paredes JP; Villarreal DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3360-3363. PubMed ID: 31946601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depth-aware pose estimation using deep learning for exoskeleton gait analysis.
    Wang Y; Pei Z; Wang C; Tang Z
    Sci Rep; 2023 Dec; 13(1):22681. PubMed ID: 38114592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-Time Human Activity Recognition with IMU and Encoder Sensors in Wearable Exoskeleton Robot via Deep Learning Networks.
    Jaramillo IE; Jeong JG; Lopez PR; Lee CH; Kang DY; Ha TJ; Oh JH; Jung H; Lee JH; Lee WH; Kim TS
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unsupervised Sim-to-Real Adaptation for Environmental Recognition in Assistive Walking.
    Chen C; Zhang K; Leng Y; Chen X; Fu C
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1350-1360. PubMed ID: 35584064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of machine learning and deep learning-based methods for locomotion mode recognition using a single inertial measurement unit.
    Vu HTT; Cao HL; Dong D; Verstraten T; Geeroms J; Vanderborght B
    Front Neurorobot; 2022; 16():923164. PubMed ID: 36524219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research on the Application of Multi-Source Information Fusion in Multiple Gait Pattern Transition Recognition.
    Guo C; Song Q; Liu Y
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-Time Hierarchical Classification of Time Series Data for Locomotion Mode Detection.
    Narayan A; Reyes FA; Ren M; Haoyong Y
    IEEE J Biomed Health Inform; 2022 Apr; 26(4):1749-1760. PubMed ID: 34410932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep leaning-based ultra-fast stair detection.
    Wang C; Pei Z; Qiu S; Tang Z
    Sci Rep; 2022 Sep; 12(1):16124. PubMed ID: 36167971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noncontact Capacitive Sensing-Based Locomotion Transition Recognition for Amputees With Robotic Transtibial Prostheses.
    Zheng E; Wang Q
    IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):161-170. PubMed ID: 26890910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Locomotion Mode Transition Prediction Based on Gait-Event Identification Using Wearable Sensors and Multilayer Perceptrons.
    Su B; Liu YX; Gutierrez-Farewik EM
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Lightweight Exoskeleton-Based Portable Gait Data Collection System.
    Haque MR; Imtiaz MH; Kwak ST; Sazonov E; Chang YH; Shen X
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33498956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A SE-DenseNet-LSTM model for locomotion mode recognition in lower limb exoskeleton.
    Tang J; Zhao L; Wu M; Jiang Z; Cao J; Bao X
    PeerJ Comput Sci; 2024; 10():e1881. PubMed ID: 38435551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How Ankle Exoskeleton Assistance Affects the Mechanics of Incline Walking and Stair Ascent in Cerebral Palsy.
    Fang Y; Lerner ZF
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.