These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36176143)

  • 1. Evaluation of Multi-layer Perceptron Neural Networks in Predicting Ankle Dorsiflexion in Healthy Adults using Movement-related Cortical Potentials for BCI-Neurofeedback Applications.
    Behboodi A; Lee WA; Bulea TC; Damiano DL
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-5. PubMed ID: 36176143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A BCI based visual-haptic neurofeedback training improves cortical activations and classification performance during motor imagery.
    Wang Z; Zhou Y; Chen L; Gu B; Liu S; Xu M; Qi H; He F; Ming D
    J Neural Eng; 2019 Oct; 16(6):066012. PubMed ID: 31365911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A visual-haptic neurofeedback training improves sensorimotor cortical activations and BCI performance.
    Wang Z; Zhou Y; Chen L; Gu B; Liu S; Xu M; Qi H; He F; Ming D
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6335-6338. PubMed ID: 31947291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alpha neurofeedback training improves SSVEP-based BCI performance.
    Wan F; da Cruz JN; Nan W; Wong CM; Vai MI; Rosa A
    J Neural Eng; 2016 Jun; 13(3):036019. PubMed ID: 27152666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain-computer interface controlled functional electrical stimulation system for ankle movement.
    Do AH; Wang PT; King CE; Abiri A; Nenadic Z
    J Neuroeng Rehabil; 2011 Aug; 8():49. PubMed ID: 21867567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electroencephalography (EEG)-based neurofeedback training for brain-computer interface (BCI).
    Choi K
    Exp Brain Res; 2013 Nov; 231(3):351-65. PubMed ID: 24068244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influential Factors of an Asynchronous BCI for Movement Intention Detection.
    Rodpongpun S; Janyalikit T; Ratanamahatana CA
    Comput Math Methods Med; 2020; 2020():8573754. PubMed ID: 32273902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determining optimal mobile neurofeedback methods for motor neurorehabilitation in children and adults with non-progressive neurological disorders: a scoping review.
    Behboodi A; Lee WA; Hinchberger VS; Damiano DL
    J Neuroeng Rehabil; 2022 Sep; 19(1):104. PubMed ID: 36171602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An EEG channel selection method for motor imagery based brain-computer interface and neurofeedback using Granger causality.
    Varsehi H; Firoozabadi SMP
    Neural Netw; 2021 Jan; 133():193-206. PubMed ID: 33220643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces.
    Lawhern VJ; Solon AJ; Waytowich NR; Gordon SM; Hung CP; Lance BJ
    J Neural Eng; 2018 Oct; 15(5):056013. PubMed ID: 29932424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Systematic Review of Virtual Reality and Robot Therapy as Recent Rehabilitation Technologies Using EEG-Brain-Computer Interface Based on Movement-Related Cortical Potentials.
    Said RR; Heyat MBB; Song K; Tian C; Wu Z
    Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain oscillatory signatures of motor tasks.
    Ramos-Murguialday A; Birbaumer N
    J Neurophysiol; 2015 Jun; 113(10):3663-82. PubMed ID: 25810484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurofeedback training with a motor imagery-based BCI: neurocognitive improvements and EEG changes in the elderly.
    Gomez-Pilar J; Corralejo R; Nicolas-Alonso LF; Álvarez D; Hornero R
    Med Biol Eng Comput; 2016 Nov; 54(11):1655-1666. PubMed ID: 26906278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An exploration of EEG features during recovery following stroke - implications for BCI-mediated neurorehabilitation therapy.
    Leamy DJ; Kocijan J; Domijan K; Duffin J; Roche RA; Commins S; Collins R; Ward TE
    J Neuroeng Rehabil; 2014 Jan; 11():9. PubMed ID: 24468185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of Movement Related Cortical Potentials from EEG Using Constrained ICA for Brain-Computer Interface Applications.
    Karimi F; Kofman J; Mrachacz-Kersting N; Farina D; Jiang N
    Front Neurosci; 2017; 11():356. PubMed ID: 28713232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of Error-Related Potentials in Stroke Patients from EEG Using an Artificial Neural Network.
    Usama N; Niazi IK; Dremstrup K; Jochumsen M
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. IENet: a robust convolutional neural network for EEG based brain-computer interfaces.
    Du Y; Liu J
    J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35605585
    [No Abstract]   [Full Text] [Related]  

  • 18. Real-time neurofeedback is effective in reducing diversion of attention from a motor task in healthy individuals and patients with amyotrophic lateral sclerosis.
    Aliakbaryhosseinabadi S; Farina D; Mrachacz-Kersting N
    J Neural Eng; 2020 Jun; 17(3):036017. PubMed ID: 32375135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of EEG spatial filters for movement related cortical potential detection.
    Karimi F; Kofman J; Mrachcz-Kersting N; Farina D; Ning Jiang
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1576-1579. PubMed ID: 28268629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A closed-loop brain-computer interface triggering an active ankle-foot orthosis for inducing cortical neural plasticity.
    Xu R; Jiang N; Mrachacz-Kersting N; Lin C; Asín Prieto G; Moreno JC; Pons JL; Dremstrup K; Farina D
    IEEE Trans Biomed Eng; 2014 Jul; 61(7):2092-101. PubMed ID: 24686231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.