These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 36176167)
1. A Unified Gait Phase Estimation and Control of Exoskeleton using Virtual Energy Regulator (VER). Nasiri R; Dinovitzer H; Arami A IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176167 [TBL] [Abstract][Full Text] [Related]
2. Preliminary assessment of a lower-limb exoskeleton controller for guiding leg movement in overground walking. Martinez A; Lawson B; Goldfarb M IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():375-380. PubMed ID: 28813848 [TBL] [Abstract][Full Text] [Related]
3. The Development and Preliminary Test of a Powered Alternately Walking Exoskeleton With the Wheeled Foot for Paraplegic Patients. Ma Q; Ji L; Wang R IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):451-459. PubMed ID: 29432112 [TBL] [Abstract][Full Text] [Related]
4. A biomechanical comparison of powered robotic exoskeleton gait with normal and slow walking: An investigation with able-bodied individuals. Hayes SC; White M; White HSF; Vanicek N Clin Biomech (Bristol); 2020 Dec; 80():105133. PubMed ID: 32777685 [TBL] [Abstract][Full Text] [Related]
5. Assistive Mobility Control of a Robotic Hip-Knee Exoskeleton for Gait Training. Changcheng C; Li YR; Chen CT Sensors (Basel); 2022 Jul; 22(13):. PubMed ID: 35808539 [TBL] [Abstract][Full Text] [Related]
6. The Effect of Crutch Gait Pattern on Shoulder Reaction Force when Walking with Lower Limb Exoskeletons. Chen X; Cheng X; Fong J; Oetomo D; Tan Y Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7574-7577. PubMed ID: 34892843 [TBL] [Abstract][Full Text] [Related]
8. Accurate Real-time Phase Estimation for Normal and Asymmetric Gait. Shushtari M; Dinovitzer H; Weng J; Arami A IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176079 [TBL] [Abstract][Full Text] [Related]
9. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton. Koller JR; Jacobs DA; Ferris DP; Remy CD J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868 [TBL] [Abstract][Full Text] [Related]
10. Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network. Lee T; Kim I; Lee SH Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923587 [TBL] [Abstract][Full Text] [Related]
11. A muscle-driven approach to restore stepping with an exoskeleton for individuals with paraplegia. Chang SR; Nandor MJ; Li L; Kobetic R; Foglyano KM; Schnellenberger JR; Audu ML; Pinault G; Quinn RD; Triolo RJ J Neuroeng Rehabil; 2017 May; 14(1):48. PubMed ID: 28558835 [TBL] [Abstract][Full Text] [Related]
12. Validating Model-Based Prediction Of Biological Knee Moment During Walking With An Exoskeleton in Crouch Gait: Potential Application for Exoskeleton Control. Chen J; Damiano DL; Lerner ZF; Bulea TC IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():778-783. PubMed ID: 31374725 [TBL] [Abstract][Full Text] [Related]
13. Overground Walking With a Transparent Exoskeleton Shows Changes in Spatiotemporal Gait Parameters. Andrade RM; Sapienza S; Mohebbi A; Fabara EE; Bonato P IEEE J Transl Eng Health Med; 2024; 12():182-193. PubMed ID: 38088995 [TBL] [Abstract][Full Text] [Related]
14. Robust walking control of a lower limb rehabilitation exoskeleton coupled with a musculoskeletal model via deep reinforcement learning. Luo S; Androwis G; Adamovich S; Nunez E; Su H; Zhou X J Neuroeng Rehabil; 2023 Mar; 20(1):34. PubMed ID: 36935514 [TBL] [Abstract][Full Text] [Related]
15. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control. McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269 [TBL] [Abstract][Full Text] [Related]
17. The Wearable Lower Limb Rehabilitation Exoskeleton Kinematic Analysis and Simulation. Li J; Peng J; Lu Z; Huang K Biomed Res Int; 2022; 2022():5029663. PubMed ID: 36072470 [TBL] [Abstract][Full Text] [Related]
18. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator. Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014 [TBL] [Abstract][Full Text] [Related]
19. Modulating Multiarticular Energy during Human Walking and Running with an Unpowered Exoskeleton. Zhou T; Zhou Z; Zhang H; Chen W Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366237 [TBL] [Abstract][Full Text] [Related]
20. Lower Limb Exoskeleton Gait Planning Based on Crutch and Human-Machine Foot Combined Center of Pressure. Yang W; Zhang J; Zhang S; Yang C Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33339443 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]