These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 36176461)

  • 21. Discovery of Transcriptional Targets Regulated by Nuclear Receptors Using a Probabilistic Graphical Model.
    Lee M; Huang R; Tong W
    Toxicol Sci; 2016 Mar; 150(1):64-73. PubMed ID: 26643261
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemical toxicity prediction for major classes of industrial chemicals: Is it possible to develop universal models covering cosmetics, drugs, and pesticides?
    Alves VM; Muratov EN; Zakharov A; Muratov NN; Andrade CH; Tropsha A
    Food Chem Toxicol; 2018 Feb; 112():526-534. PubMed ID: 28412406
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development, validation and integration of in silico models to identify androgen active chemicals.
    Manganelli S; Roncaglioni A; Mansouri K; Judson RS; Benfenati E; Manganaro A; Ruiz P
    Chemosphere; 2019 Apr; 220():204-215. PubMed ID: 30584954
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of the endocrine disruption profile of pesticides.
    Devillers J; Bro E; Millot F
    SAR QSAR Environ Res; 2015; 26(10):831-52. PubMed ID: 26548639
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combined receptor and ligand-based approach to the universal pharmacophore model development for studies of drug blockade to the hERG1 pore domain.
    Durdagi S; Duff HJ; Noskov SY
    J Chem Inf Model; 2011 Feb; 51(2):463-74. PubMed ID: 21241063
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of selective MMP-9 inhibitors through multiple e-pharmacophore, ligand-based pharmacophore, molecular docking, and density functional theory approaches.
    Jana S; Singh SK
    J Biomol Struct Dyn; 2019 Mar; 37(4):944-965. PubMed ID: 29475408
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structures of Endocrine-Disrupting Chemicals Correlate with the Activation of 12 Classic Nuclear Receptors.
    Tan H; Chen Q; Hong H; Benfenati E; Gini GC; Zhang X; Yu H; Shi W
    Environ Sci Technol; 2021 Dec; 55(24):16552-16562. PubMed ID: 34859678
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Allosteric binding on nuclear receptors: Insights on screening of non-competitive endocrine-disrupting chemicals.
    Zhang C; Wu J; Chen Q; Tan H; Huang F; Guo J; Zhang X; Yu H; Shi W
    Environ Int; 2022 Jan; 159():107009. PubMed ID: 34883459
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Docking and Virtual Screening in Drug Discovery.
    Kontoyianni M
    Methods Mol Biol; 2017; 1647():255-266. PubMed ID: 28809009
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Current in vitro high throughput screening approaches to assess nuclear receptor activation.
    Raucy JL; Lasker JM
    Curr Drug Metab; 2010 Nov; 11(9):806-14. PubMed ID: 21189134
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New horizons in antimalarial drug discovery in the last decade by chemoinformatic approaches.
    Ambre PK; Wavhale RD; Coutinho EC
    Comb Chem High Throughput Screen; 2015; 18(2):129-50. PubMed ID: 25543682
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In Silico Study of In Vitro GPCR Assays by QSAR Modeling.
    Mansouri K; Judson RS
    Methods Mol Biol; 2016; 1425():361-81. PubMed ID: 27311474
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent trends and future prospects in computational GPCR drug discovery: from virtual screening to polypharmacology.
    Carrieri A; Pérez-Nueno VI; Lentini G; Ritchie DW
    Curr Top Med Chem; 2013; 13(9):1069-97. PubMed ID: 23651484
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Applications and limitations of in silico models in drug discovery.
    Sacan A; Ekins S; Kortagere S
    Methods Mol Biol; 2012; 910():87-124. PubMed ID: 22821594
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High throughput screening (HTS) in identification new ligands and drugable targets of G protein-coupled receptors (GPCRs).
    Wang D; Li Y; Zhang Y; Liu Y; Shi G
    Comb Chem High Throughput Screen; 2012 Mar; 15(3):232-41. PubMed ID: 22221056
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Advances in G protein-coupled receptor high-throughput screening.
    Yasi EA; Kruyer NS; Peralta-Yahya P
    Curr Opin Biotechnol; 2020 Aug; 64():210-217. PubMed ID: 32653805
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nuclear Receptors Database Including Negative Data (NR-DBIND): A Database Dedicated to Nuclear Receptors Binding Data Including Negative Data and Pharmacological Profile.
    Réau M; Lagarde N; Zagury JF; Montes M
    J Med Chem; 2019 Mar; 62(6):2894-2904. PubMed ID: 30354114
    [TBL] [Abstract][Full Text] [Related]  

  • 38. G-quadruplex virtual drug screening: A review.
    Monsen RC; Trent JO
    Biochimie; 2018 Sep; 152():134-148. PubMed ID: 29966734
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Discovery of new human epidermal growth factor receptor-2 (HER2) inhibitors for potential use as anticancer agents via ligand-based pharmacophore modeling.
    Zalloum H; Tayyem R; Irmaileh BA; Bustanji Y; Zihlif M; Mohammad M; Rjai TA; Mubarak MS
    J Mol Graph Model; 2015 Sep; 61():61-84. PubMed ID: 26188796
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Role of Alternative Toxicological Trials in Drug Discovery Programs. The Case of
    Göethel G; Augsten LV; das Neves GM; Gonçalves IL; de Souza JPS; Garcia SC; Eifler-Lima VL
    Curr Med Chem; 2022; 29(32):5270-5288. PubMed ID: 35352642
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.