These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 36176592)

  • 1. Unbuilding the city: Deconstruction and the circular economy in Vancouver.
    Lynch N
    Environ Plan A; 2022 Nov; 54(8):1586-1603. PubMed ID: 36176592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction and demolition waste framework of circular economy: A mini review.
    Papamichael I; Voukkali I; Loizia P; Zorpas AA
    Waste Manag Res; 2023 Dec; 41(12):1728-1740. PubMed ID: 37653387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A BIM-based system for demolition and renovation waste estimation and planning.
    Cheng JC; Ma LY
    Waste Manag; 2013 Jun; 33(6):1539-51. PubMed ID: 23490358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circular Economy of Construction and Demolition Waste: A Literature Review on Lessons, Challenges, and Benefits.
    Purchase CK; Al Zulayq DM; O'Brien BT; Kowalewski MJ; Berenjian A; Tarighaleslami AH; Seifan M
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clean construction and demolition waste material cycles through optimised pre-demolition waste audit documentation: A review on building material assessment tools.
    Rašković M; Ragossnig AM; Kondracki K; Ragossnig-Angst M
    Waste Manag Res; 2020 Sep; 38(9):923-941. PubMed ID: 32635832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methodology to assess the circularity in building construction and refurbishment activities.
    González A; Sendra C; Herena A; Rosquillas M; Vaz D
    Resour Conserv Recycl Adv; 2021 Dec; 12():None. PubMed ID: 34977854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatiotemporally Explicit Mapping of Built Environment Stocks Reveals Two Centuries of Urban Development in a Fairytale City, Odense, Denmark.
    Li Q; Gummidi SRB; Lanau M; Yu B; Liu G
    Environ Sci Technol; 2022 Nov; 56(22):16369-16381. PubMed ID: 36256736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An overview of the waste hierarchy framework for analyzing the circularity in construction and demolition waste management in Europe.
    Zhang C; Hu M; Di Maio F; Sprecher B; Yang X; Tukker A
    Sci Total Environ; 2022 Jan; 803():149892. PubMed ID: 34500281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling of mineral construction and demolition waste dynamics through a combination of geospatial and image analysis.
    Bogoviku L; Waldmann D
    J Environ Manage; 2021 Mar; 282():111879. PubMed ID: 33465712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New circularity indicator for decision making in the stockpile management of construction and demolition waste: Perspectives of Australian practitioners.
    Pilipenets O; Kin Peng Hui F; Gunawardena T; Mendis P; Aye L
    J Environ Manage; 2024 Jul; 363():121345. PubMed ID: 38852409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circular Economy on Construction and Demolition Waste: A Literature Review on Material Recovery and Production.
    Ginga CP; Ongpeng JMC; Daly MKM
    Materials (Basel); 2020 Jul; 13(13):. PubMed ID: 32635157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Choosing a sustainable demolition waste management strategy using multicriteria decision analysis.
    Roussat N; Dujet C; Méhu J
    Waste Manag; 2009 Jan; 29(1):12-20. PubMed ID: 18572397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Review of construction and demolition waste management in China and USA.
    Aslam MS; Huang B; Cui L
    J Environ Manage; 2020 Jun; 264():110445. PubMed ID: 32217323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developing efficient circularity for construction and demolition waste management in fast emerging economies: Lessons learned from Shenzhen, China.
    Bao Z; Lu W
    Sci Total Environ; 2020 Jul; 724():138264. PubMed ID: 32247127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The hidden concept and the beauty of multiple "R" in the framework of waste strategies development reflecting to circular economy principles.
    Zorpas AA
    Sci Total Environ; 2024 Aug; 952():175508. PubMed ID: 39153637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic review of drivers influencing building deconstructability: Towards a construct-based conceptual framework.
    Balogun H; Alaka H; Egwim CN; Ajayi S
    Waste Manag Res; 2023 Mar; 41(3):512-530. PubMed ID: 36250852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circular economy in Brazilian construction industry: Current scenario, challenges and opportunities.
    Hentges TI; Machado da Motta EA; Valentin de Lima Fantin T; Moraes D; Fretta MA; Pinto MF; Spiering Böes J
    Waste Manag Res; 2022 Jun; 40(6):642-653. PubMed ID: 34634967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating the COVID-19 impacts on the construction and demolition waste management and resource recovery industry: experience from the Australian built environment sector.
    Shooshtarian S; Caldera S; Maqsood T; Ryley T
    Clean Technol Environ Policy; 2022; 24(10):3199-3212. PubMed ID: 36212109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparisons of stakeholders' influences, inter-relationships, and obstacles for circular economy implementation on existing building sectors.
    Kaewunruen S; Teuffel P; Donmez Cavdar A; Valta O; Tambovceva T; Bajare D
    Sci Rep; 2024 May; 14(1):11046. PubMed ID: 38745060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing material circularity pathways in industrial waste streams: A decision-making model.
    Edirisinghe LGLM; de Alwis AAP; Prakash S; Wijayasundara M
    MethodsX; 2024 Dec; 13():102813. PubMed ID: 39040212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.