BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 36176596)

  • 1. A bioprinted complex tissue model for myotendinous junction with biochemical and biophysical cues.
    Kim WJ; Kim GH
    Bioeng Transl Med; 2022 Sep; 7(3):e10321. PubMed ID: 36176596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro development of a muscle-tendon junction construct using decellularised extracellular matrix: Effect of cyclic tensile loading.
    Iwasaki N; Roldo M; Karali A; Blunn G
    Biomater Adv; 2024 Jul; 161():213873. PubMed ID: 38692180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioprinted hASC-laden cell constructs with mechanically stable and cell alignment cue for tenogenic differentiation.
    Kim D; Kim G
    Biofabrication; 2023 Jul; 15(4):. PubMed ID: 37442127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An engineered in vitro model of the human myotendinous junction.
    Josvai M; Polyak E; Kalluri M; Robertson S; Crone WC; Suzuki M
    Acta Biomater; 2024 May; 180():279-294. PubMed ID: 38604466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of decellularized biphasic hierarchical myotendinous junction extracellular matrix for muscle regeneration.
    Zhao C; Wang S; Wang G; Su M; Song L; Chen J; Fan S; Lin X
    Acta Biomater; 2018 Mar; 68():15-28. PubMed ID: 29294376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient myotube formation in 3D bioprinted tissue construct by biochemical and topographical cues.
    Kim W; Lee H; Lee J; Atala A; Yoo JJ; Lee SJ; Kim GH
    Biomaterials; 2020 Feb; 230():119632. PubMed ID: 31761486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Bioink from Decellularized Tendon Extracellular Matrix for 3D Bioprinting.
    Toprakhisar B; Nadernezhad A; Bakirci E; Khani N; Skvortsov GA; Koc B
    Macromol Biosci; 2018 Oct; 18(10):e1800024. PubMed ID: 30019414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid Volumetric Bioprinting of Decellularized Extracellular Matrix Bioinks.
    Lian L; Xie M; Luo Z; Zhang Z; Maharjan S; Mu X; Garciamendez-Mijares CE; Kuang X; Sahoo JK; Tang G; Li G; Wang D; Guo J; González FZ; Abril Manjarrez Rivera V; Cai L; Mei X; Kaplan DL; Zhang YS
    Adv Mater; 2024 Jan; ():e2304846. PubMed ID: 38252896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks.
    Sorkio A; Koch L; Koivusalo L; Deiwick A; Miettinen S; Chichkov B; Skottman H
    Biomaterials; 2018 Jul; 171():57-71. PubMed ID: 29684677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical loading is required for initiation of extracellular matrix deposition at the developing murine myotendinous junction.
    Lipp SN; Jacobson KR; Colling HA; Tuttle TG; Miles DT; McCreery KP; Calve S
    Matrix Biol; 2023 Feb; 116():28-48. PubMed ID: 36709857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 3D cell printed muscle construct with tissue-derived bioink for the treatment of volumetric muscle loss.
    Choi YJ; Jun YJ; Kim DY; Yi HG; Chae SH; Kang J; Lee J; Gao G; Kong JS; Jang J; Chung WK; Rhie JW; Cho DW
    Biomaterials; 2019 Jun; 206():160-169. PubMed ID: 30939408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designing Decellularized Extracellular Matrix-Based Bioinks for 3D Bioprinting.
    Abaci A; Guvendiren M
    Adv Healthc Mater; 2020 Dec; 9(24):e2000734. PubMed ID: 32691980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs.
    Skardal A; Devarasetty M; Kang HW; Mead I; Bishop C; Shupe T; Lee SJ; Jackson J; Yoo J; Soker S; Atala A
    Acta Biomater; 2015 Oct; 25():24-34. PubMed ID: 26210285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Larger interface area at the human myotendinous junction in type 1 compared with type 2 muscle fibers.
    Jakobsen JR; Mackey AL; Koch M; Imhof T; Hannibal J; Kjaer M; Krogsgaard MR
    Scand J Med Sci Sports; 2023 Feb; 33(2):136-145. PubMed ID: 36226768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrospun Aligned Nanofiber Yarns Constructed Biomimetic M-Type Interface Integrated into Precise Co-Culture System as Muscle-Tendon Junction-on-a-Chip for Drug Development.
    Su W; Yang Q; Li T; Xu J; Yin P; Han M; Lin Z; Deng Y; Wu Y; Huang W; Wang L
    Small Methods; 2024 Apr; ():e2301754. PubMed ID: 38593371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix.
    Shin YJ; Shafranek RT; Tsui JH; Walcott J; Nelson A; Kim DH
    Acta Biomater; 2021 Jan; 119():75-88. PubMed ID: 33166713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioprinting of 3D Tissue Models Using Decellularized Extracellular Matrix Bioink.
    Pati F; Cho DW
    Methods Mol Biol; 2017; 1612():381-390. PubMed ID: 28634957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA sequencing and immunofluorescence of the myotendinous junction of mature horses and humans.
    Jakobsen JR; Schjerling P; Svensson RB; Buhl R; Carstensen H; Koch M; Krogsgaard MR; Kjær M; Mackey AL
    Am J Physiol Cell Physiol; 2021 Sep; 321(3):C453-C470. PubMed ID: 34260300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organ-Derived Decellularized Extracellular Matrix: A Game Changer for Bioink Manufacturing?
    Choudhury D; Tun HW; Wang T; Naing MW
    Trends Biotechnol; 2018 Aug; 36(8):787-805. PubMed ID: 29678431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery of Muscle-Tendon Progenitor Subpopulation in Human Myotendinous Junction at Single-Cell Resolution.
    Yan R; Zhang H; Ma Y; Lin R; Zhou B; Zhang T; Fan C; Zhang Y; Wang Z; Fang T; Yin Z; Cai Y; Ouyang H; Chen X
    Research (Wash D C); 2022; 2022():9760390. PubMed ID: 36267539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.