BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 36176620)

  • 1. Engineering hypertrophic cartilage grafts from lipoaspirate for critical-sized calvarial bone defect reconstruction: An adipose tissue-based developmental engineering approach.
    Huang RL; Fu R; Yan Y; Liu C; Yang J; Xie Y; Li Q
    Bioeng Transl Med; 2022 Sep; 7(3):e10312. PubMed ID: 36176620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Endochondral Ossification-Based Approach to Bone Repair: Chondrogenically Primed Mesenchymal Stem Cell-Laden Scaffolds Support Greater Repair of Critical-Sized Cranial Defects Than Osteogenically Stimulated Constructs In Vivo.
    Thompson EM; Matsiko A; Kelly DJ; Gleeson JP; O'Brien FJ
    Tissue Eng Part A; 2016 Mar; 22(5-6):556-67. PubMed ID: 26896424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone defect reconstruction via endochondral ossification: A developmental engineering strategy.
    Fu R; Liu C; Yan Y; Li Q; Huang RL
    J Tissue Eng; 2021; 12():20417314211004211. PubMed ID: 33868628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue-engineered hypertrophic chondrocyte grafts enhanced long bone repair.
    Bernhard J; Ferguson J; Rieder B; Heimel P; Nau T; Tangl S; Redl H; Vunjak-Novakovic G
    Biomaterials; 2017 Sep; 139():202-212. PubMed ID: 28622604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orthotopic Bone Formation by Streamlined Engineering and Devitalization of Human Hypertrophic Cartilage.
    Pigeot S; Bourgine PE; Claude J; Scotti C; Papadimitropoulos A; Todorov A; Epple C; Peretti GM; Martin I
    Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 33008121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D bioprinting of cartilaginous templates for large bone defect healing.
    Pitacco P; Sadowska JM; O'Brien FJ; Kelly DJ
    Acta Biomater; 2023 Jan; 156():61-74. PubMed ID: 35907556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endochondral Bone Tissue Engineering Using Human Induced Pluripotent Stem Cells.
    Arakura M; Lee SY; Fukui T; Oe K; Takahara S; Matsumoto T; Hayashi S; Matsushita T; Kuroda R; Niikura T
    Tissue Eng Part A; 2022 Feb; 28(3-4):184-195. PubMed ID: 34309415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porous decellularized tissue engineered hypertrophic cartilage as a scaffold for large bone defect healing.
    Cunniffe GM; Vinardell T; Murphy JM; Thompson EM; Matsiko A; O'Brien FJ; Kelly DJ
    Acta Biomater; 2015 Sep; 23():82-90. PubMed ID: 26038199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promoting Endochondral Bone Repair Using Human Osteoarthritic Articular Chondrocytes.
    Bahney CS; Jacobs L; Tamai R; Hu D; Luan TF; Wang M; Reddy S; Park M; Limburg S; Kim HT; Marcucio R; Kuo AC
    Tissue Eng Part A; 2016 Mar; 22(5-6):427-35. PubMed ID: 26830207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decellularized Cartilage Extracellular Matrix Incorporated Silk Fibroin Hybrid Scaffolds for Endochondral Ossification Mediated Bone Regeneration.
    Jeyakumar V; Amraish N; Niculescu-Morsza E; Bauer C; Pahr D; Nehrer S
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33919985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repair of a Rat Mandibular Bone Defect by Hypertrophic Cartilage Grafts Engineered From Human Fractionated Adipose Tissue.
    Cheng C; Chaaban M; Born G; Martin I; Li Q; Schaefer DJ; Jaquiery C; Scherberich A
    Front Bioeng Biotechnol; 2022; 10():841690. PubMed ID: 35350180
    [No Abstract]   [Full Text] [Related]  

  • 12. Repair of bone defects in vivo using tissue engineered hypertrophic cartilage grafts produced from nasal chondrocytes.
    Bardsley K; Kwarciak A; Freeman C; Brook I; Hatton P; Crawford A
    Biomaterials; 2017 Jan; 112():313-323. PubMed ID: 27770634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fractionated human adipose tissue as a native biomaterial for the generation of a bone organ by endochondral ossification.
    Guerrero J; Pigeot S; Müller J; Schaefer DJ; Martin I; Scherberich A
    Acta Biomater; 2018 Sep; 77():142-154. PubMed ID: 30126590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recapitulating endochondral ossification: a promising route to in vivo bone regeneration.
    Thompson EM; Matsiko A; Farrell E; Kelly DJ; O'Brien FJ
    J Tissue Eng Regen Med; 2015 Aug; 9(8):889-902. PubMed ID: 24916192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D printing of fibre-reinforced cartilaginous templates for the regeneration of osteochondral defects.
    Critchley S; Sheehy EJ; Cunniffe G; Diaz-Payno P; Carroll SF; Jeon O; Alsberg E; Brama PAJ; Kelly DJ
    Acta Biomater; 2020 Sep; 113():130-143. PubMed ID: 32505800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fat-Derived Stromal Vascular Fraction Cells Enhance the Bone-Forming Capacity of Devitalized Engineered Hypertrophic Cartilage Matrix.
    Todorov A; Kreutz M; Haumer A; Scotti C; Barbero A; Bourgine PE; Scherberich A; Jaquiery C; Martin I
    Stem Cells Transl Med; 2016 Dec; 5(12):1684-1694. PubMed ID: 27460849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo evaluation of mixtures of uncultured freshly isolated adipose-derived stem cells and demineralized bone matrix for bone regeneration in a rat critically sized calvarial defect model.
    Rhee SC; Ji YH; Gharibjanian NA; Dhong ES; Park SH; Yoon ES
    Stem Cells Dev; 2011 Feb; 20(2):233-42. PubMed ID: 20528145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering bone-forming biohybrid sheets through the integration of melt electrowritten membranes and cartilaginous microspheroids.
    Hall GN; Chandrakar A; Pastore A; Ioannidis K; Moisley K; Cirstea M; Geris L; Moroni L; Luyten FP; Wieringa P; Papantoniou I
    Acta Biomater; 2023 Jul; 165():111-124. PubMed ID: 36283613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of ASCs engineered to express BMP2 or TGF-β3 within scaffold constructs to promote calvarial bone repair.
    Lin CY; Chang YH; Li KC; Lu CH; Sung LY; Yeh CL; Lin KJ; Huang SF; Yen TC; Hu YC
    Biomaterials; 2013 Dec; 34(37):9401-12. PubMed ID: 24016854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering cartilage or endochondral bone: a comparison of different naturally derived hydrogels.
    Sheehy EJ; Mesallati T; Vinardell T; Kelly DJ
    Acta Biomater; 2015 Feb; 13():245-53. PubMed ID: 25463500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.