These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 36176620)

  • 21. Suppressing mesenchymal stem cell hypertrophy and endochondral ossification in 3D cartilage regeneration with nanofibrous poly(l-lactic acid) scaffold and matrilin-3.
    Liu Q; Wang J; Chen Y; Zhang Z; Saunders L; Schipani E; Chen Q; Ma PX
    Acta Biomater; 2018 Aug; 76():29-38. PubMed ID: 29940371
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Implantation of Human-Induced Pluripotent Stem Cell-Derived Cartilage in Bone Defects of Mice.
    Iimori Y; Morioka M; Koyamatsu S; Tsumaki N
    Tissue Eng Part A; 2021 Nov; 27(21-22):1355-1367. PubMed ID: 33567995
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Manufacturing of Human Tissues as off-the-Shelf Grafts Programmed to Induce Regeneration.
    Pigeot S; Klein T; Gullotta F; Dupard SJ; Garcia Garcia A; García-García A; Prithiviraj S; Lorenzo P; Filippi M; Jaquiery C; Kouba L; Asnaghi MA; Raina DB; Dasen B; Isaksson H; Önnerfjord P; Tägil M; Bondanza A; Martin I; Bourgine PE
    Adv Mater; 2021 Oct; 33(43):e2103737. PubMed ID: 34486186
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of artificial bone graft via
    Ma C; Tao C; Zhang Z; Zhou H; Fan C; Wang DA
    Mater Today Bio; 2023 Dec; 23():100893. PubMed ID: 38161510
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Undifferentiated human adipose-derived stromal/stem cells loaded onto wet-spun starch-polycaprolactone scaffolds enhance bone regeneration: nude mice calvarial defect in vivo study.
    Carvalho PP; Leonor IB; Smith BJ; Dias IR; Reis RL; Gimble JM; Gomes ME
    J Biomed Mater Res A; 2014 Sep; 102(9):3102-11. PubMed ID: 24123913
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dispersion of ceramic granules within human fractionated adipose tissue to enhance endochondral bone formation.
    Huang RL; Guerrero J; Senn AS; Kappos EA; Liu K; Li Q; Dufrane D; Schaefer DJ; Martin I; Scherberich A
    Acta Biomater; 2020 Jan; 102():458-467. PubMed ID: 31783141
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering.
    Scotti C; Tonnarelli B; Papadimitropoulos A; Scherberich A; Schaeren S; Schauerte A; Lopez-Rios J; Zeller R; Barbero A; Martin I
    Proc Natl Acad Sci U S A; 2010 Apr; 107(16):7251-6. PubMed ID: 20406908
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Developmental engineering of living implants for deep osteochondral joint surface defects.
    Mendes LF; Bosmans K; Van Hoven I; Viseu SR; Maréchal M; Luyten FP
    Bone; 2020 Oct; 139():115520. PubMed ID: 32622872
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D printed microchannel networks to direct vascularisation during endochondral bone repair.
    Daly AC; Pitacco P; Nulty J; Cunniffe GM; Kelly DJ
    Biomaterials; 2018 Apr; 162():34-46. PubMed ID: 29432987
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Treatment of osteochondral defects in the rabbit's knee joint by implantation of allogeneic mesenchymal stem cells in fibrin clots.
    Berninger MT; Wexel G; Rummeny EJ; Imhoff AB; Anton M; Henning TD; Vogt S
    J Vis Exp; 2013 May; (75):e4423. PubMed ID: 23728213
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Developmental Engineering-Based Approach to Bone Repair: Endochondral Priming Enhances Vascularization and New Bone Formation in a Critical Size Defect.
    Freeman FE; Brennan MÁ; Browe DC; Renaud A; De Lima J; Kelly DJ; McNamara LM; Layrolle P
    Front Bioeng Biotechnol; 2020; 8():230. PubMed ID: 32296687
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prefabrication of a large pedicled bone graft by engineering the germ for de novo vascularization and osteoinduction.
    Epple C; Haumer A; Ismail T; Lunger A; Scherberich A; Schaefer DJ; Martin I
    Biomaterials; 2019 Feb; 192():118-127. PubMed ID: 30448696
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ceria nanoparticles enhance endochondral ossification-based critical-sized bone defect regeneration by promoting the hypertrophic differentiation of BMSCs
    Li J; Kang F; Gong X; Bai Y; Dai J; Zhao C; Dou C; Cao Z; Liang M; Dong R; Jiang H; Yang X; Dong S
    FASEB J; 2019 May; 33(5):6378-6389. PubMed ID: 30776318
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Perfusion Enhances Hypertrophic Chondrocyte Matrix Deposition, But Not the Bone Formation.
    Bernhard JC; Hulphers E; Rieder B; Ferguson J; Rünzler D; Nau T; Redl H; Vunjak-Novakovic G
    Tissue Eng Part A; 2018 Jun; 24(11-12):1022-1033. PubMed ID: 29373945
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An endochondral ossification approach to early stage bone repair: Use of tissue-engineered hypertrophic cartilage constructs as primordial templates for weight-bearing bone repair.
    Matsiko A; Thompson EM; Lloyd-Griffith C; Cunniffe GM; Vinardell T; Gleeson JP; Kelly DJ; O'Brien FJ
    J Tissue Eng Regen Med; 2018 Apr; 12(4):e2147-e2150. PubMed ID: 29327428
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Close-to-native bone repair via tissue-engineered endochondral ossification approaches.
    Nadine S; Fernandes IJ; Correia CR; Mano JF
    iScience; 2022 Nov; 25(11):105370. PubMed ID: 36339269
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Potential Application of Pulsed Ultrasound on Bone Defect Repair via Developmental Engineering: An In Vitro Study.
    Wang J; Tang N; Xiao Q; Zhao L; Li Y; Li J; Wang J; Zhao Z; Tan L
    Artif Organs; 2016 May; 40(5):505-13. PubMed ID: 26526417
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Angiogenic Potential of Human Bone Marrow-Derived Mesenchymal Stem Cells in Chondrocyte Brick-Enriched Constructs Promoted Stable Regeneration of Craniofacial Cartilage.
    Li Z; Ba R; Wang Z; Wei J; Zhao Y; Wu W
    Stem Cells Transl Med; 2017 Feb; 6(2):601-612. PubMed ID: 28191761
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of Stromal Vascular Fraction and Passaged Adipose-Derived Stromal/Stem Cells as Point-of-Care Agents for Bone Regeneration.
    Nyberg E; Farris A; O'Sullivan A; Rodriguez R; Grayson W
    Tissue Eng Part A; 2019 Nov; 25(21-22):1459-1469. PubMed ID: 30734661
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biomaterial-based endochondral bone regeneration: a shift from traditional tissue engineering paradigms to developmentally inspired strategies.
    Sheehy EJ; Kelly DJ; O'Brien FJ
    Mater Today Bio; 2019 Jun; 3():100009. PubMed ID: 32159148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.