These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 36176924)

  • 1. Multichannel stimulation module as a tool for animal studies on cortical neural prostheses.
    Hayashida Y; Kameda S; Umehira Y; Ishikawa S; Yagi T
    Front Med Technol; 2022; 4():927581. PubMed ID: 36176924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple factors may influence the performance of a visual prosthesis based on intracortical microstimulation: nonhuman primate behavioural experimentation.
    Torab K; Davis TS; Warren DJ; House PA; Normann RA; Greger B
    J Neural Eng; 2011 Jun; 8(3):035001. PubMed ID: 21593550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical neural excitations in rats in vivo with using a prototype of a wireless multi-channel microstimulation system.
    Hayashida Y; Umehira Y; Takatani K; Futami S; Kameda S; Kamata T; Khan AU; Takeuchi Y; Imai M; Yagi T
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1642-5. PubMed ID: 26736590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstimulation of visual cortex to restore vision.
    Tehovnik EJ; Slocum WM; Smirnakis SM; Tolias AS
    Prog Brain Res; 2009; 175():347-75. PubMed ID: 19660667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reducing Behavioral Detection Thresholds per Electrode
    Kunigk NG; Urdaneta ME; Malone IG; Delgado F; Otto KJ
    Front Neurosci; 2022; 16():876142. PubMed ID: 35784835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microstimulation-evoked neural responses in visual cortex are depth dependent.
    Allison-Walker T; Hagan MA; Price NSC; Wong YT
    Brain Stimul; 2021; 14(4):741-750. PubMed ID: 33975054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstimulation of area V4 has little effect on spatial attention and on perception of phosphenes evoked in area V1.
    Dagnino B; Gariel-Mathis MA; Roelfsema PR
    J Neurophysiol; 2015 Feb; 113(3):730-9. PubMed ID: 25392172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex.
    Schmidt EM; Bak MJ; Hambrecht FT; Kufta CV; O'Rourke DK; Vallabhanath P
    Brain; 1996 Apr; 119 ( Pt 2)():507-22. PubMed ID: 8800945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial Restriction of Neural Activation Using Focused Multipolar Stimulation With a Retinal Prosthesis.
    Spencer TC; Fallon JB; Thien PC; Shivdasani MN
    Invest Ophthalmol Vis Sci; 2016 Jun; 57(7):3181-91. PubMed ID: 27309622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical layering disrupts multi-electrode current steering.
    Meikle SJ; Hagan MA; Price NSC; Wong YT
    J Neural Eng; 2023 Jun; 20(3):. PubMed ID: 37267940
    [No Abstract]   [Full Text] [Related]  

  • 12. Selective Activation of Cortical Columns Using Multichannel Magnetic Stimulation With a Bent Flat Microwire Array.
    Lee SW
    IEEE Trans Biomed Eng; 2021 Jul; 68(7):2164-2175. PubMed ID: 33095707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortical visual prostheses: from microstimulation to functional percept.
    Najarpour Foroushani A; Pack CC; Sawan M
    J Neural Eng; 2018 Apr; 15(2):021005. PubMed ID: 29350199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-electrode stimulation evokes consistent spatial patterns of phosphenes and improves phosphene mapping in blind subjects.
    Oswalt D; Bosking W; Sun P; Sheth SA; Niketeghad S; Salas MA; Patel U; Greenberg R; Dorn J; Pouratian N; Beauchamp M; Yoshor D
    Brain Stimul; 2021; 14(5):1356-1372. PubMed ID: 34482000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind.
    Dobelle WH; Mladejovsky MG
    J Physiol; 1974 Dec; 243(2):553-76. PubMed ID: 4449074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial resolution of local field potential signals in macaque V4.
    Foroushani AN; Neupane S; De Heredia Pastor P; Pack CC; Sawan M
    J Neural Eng; 2020 Mar; 17(2):026003. PubMed ID: 32023554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis of phosphenes induced by navigation-guided repetitive transcranial magnetic stimulation.
    Tani N; Hirata M; Motoki Y; Saitoh Y; Yanagisawa T; Goto T; Hosomi K; Kozu A; Kishima H; Yorifuji S; Yoshimine T
    Brain Stimul; 2011 Jan; 4(1):28-37. PubMed ID: 21255752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model-based analysis of multiple electrode array stimulation for epiretinal visual prostheses.
    Mueller JK; Grill WM
    J Neural Eng; 2013 Jun; 10(3):036002. PubMed ID: 23548495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of cortical responses to simultaneous electrical stimulation of the retina.
    Halupka KJ; Shivdasani MN; Cloherty SL; Grayden DB; Wong YT; Burkitt AN; Meffin H
    J Neural Eng; 2017 Feb; 14(1):016006. PubMed ID: 27900949
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.