These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 36177230)
1. A case study of NeuralProphet and nonlinear evaluation for high accuracy prediction in short-term forecasting in PV solar plant. Arias Velásquez RM Heliyon; 2022 Sep; 8(9):e10639. PubMed ID: 36177230 [TBL] [Abstract][Full Text] [Related]
2. Short-term solar energy forecasting: Integrated computational intelligence of LSTMs and GRU. Zameer A; Jaffar F; Shahid F; Muneeb M; Khan R; Nasir R PLoS One; 2023; 18(10):e0285410. PubMed ID: 37792739 [TBL] [Abstract][Full Text] [Related]
3. Fuzzy-based prediction of solar PV and wind power generation for microgrid modeling using particle swarm optimization. Teferra DM; Ngoo LMH; Nyakoe GN Heliyon; 2023 Jan; 9(1):e12802. PubMed ID: 36704286 [TBL] [Abstract][Full Text] [Related]
4. Artificial Intelligence based accurately load forecasting system to forecast short and medium-term load demands. Butt FM; Hussain L; Mahmood A; Lone KJ Math Biosci Eng; 2020 Dec; 18(1):400-425. PubMed ID: 33525099 [TBL] [Abstract][Full Text] [Related]
5. An ensemble method to forecast 24-h ahead solar irradiance using wavelet decomposition and BiLSTM deep learning network. Singla P; Duhan M; Saroha S Earth Sci Inform; 2022; 15(1):291-306. PubMed ID: 34804244 [TBL] [Abstract][Full Text] [Related]
6. The comparative analysis of SARIMA, Facebook Prophet, and LSTM for road traffic injury prediction in Northeast China. Feng T; Zheng Z; Xu J; Liu M; Li M; Jia H; Yu X Front Public Health; 2022; 10():946563. PubMed ID: 35937210 [TBL] [Abstract][Full Text] [Related]
7. Comparison of ARIMA and LSTM for prediction of hemorrhagic fever at different time scales in China. Zhang R; Song H; Chen Q; Wang Y; Wang S; Li Y PLoS One; 2022; 17(1):e0262009. PubMed ID: 35030203 [TBL] [Abstract][Full Text] [Related]
8. Solar forecasting for a PV-battery powered DC system. K IA; V R; N V; Rajasri P Heliyon; 2023 Oct; 9(10):e20667. PubMed ID: 37860506 [TBL] [Abstract][Full Text] [Related]
9. Study on the prediction effect of a combined model of SARIMA and LSTM based on SSA for influenza in Shanxi Province, China. Zhao Z; Zhai M; Li G; Gao X; Song W; Wang X; Ren H; Cui Y; Qiao Y; Ren J; Chen L; Qiu L BMC Infect Dis; 2023 Feb; 23(1):71. PubMed ID: 36747126 [TBL] [Abstract][Full Text] [Related]
10. Prediction of hepatitis E using machine learning models. Guo Y; Feng Y; Qu F; Zhang L; Yan B; Lv J PLoS One; 2020; 15(9):e0237750. PubMed ID: 32941452 [TBL] [Abstract][Full Text] [Related]
11. Performance evaluation of Emergency Department patient arrivals forecasting models by including meteorological and calendar information: A comparative study. Sudarshan VK; Brabrand M; Range TM; Wiil UK Comput Biol Med; 2021 Aug; 135():104541. PubMed ID: 34166880 [TBL] [Abstract][Full Text] [Related]
12. Water quality assessment of a river using deep learning Bi-LSTM methodology: forecasting and validation. Khullar S; Singh N Environ Sci Pollut Res Int; 2022 Feb; 29(9):12875-12889. PubMed ID: 33988840 [TBL] [Abstract][Full Text] [Related]
13. Comparison of ARIMA model, DNN model and LSTM model in predicting disease burden of occupational pneumoconiosis in Tianjin, China. Lou HR; Wang X; Gao Y; Zeng Q BMC Public Health; 2022 Nov; 22(1):2167. PubMed ID: 36434563 [TBL] [Abstract][Full Text] [Related]
14. Short and Long term predictions of Hospital emergency department attendances. Jilani T; Housley G; Figueredo G; Tang PS; Hatton J; Shaw D Int J Med Inform; 2019 Sep; 129():167-174. PubMed ID: 31445251 [TBL] [Abstract][Full Text] [Related]
15. Solar power forecasting beneath diverse weather conditions using GD and LM-artificial neural networks. Sharma N; Puri V; Mahajan S; Abualigah L; Zitar RA; Gandomi AH Sci Rep; 2023 May; 13(1):8517. PubMed ID: 37231039 [TBL] [Abstract][Full Text] [Related]
16. Intra-Day Solar Power Forecasting Strategy for Managing Virtual Power Plants. Moreno G; Santos C; Martín P; Rodríguez FJ; Peña R; Vuksanovic B Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451090 [TBL] [Abstract][Full Text] [Related]
17. Harnessing the power of hybrid deep learning algorithm for the estimation of global horizontal irradiance. Gupta R; Yadav AK; Jha SK Sci Total Environ; 2024 Sep; 943():173958. PubMed ID: 38871320 [TBL] [Abstract][Full Text] [Related]
18. A COVID-19 Pandemic Artificial Intelligence-Based System With Deep Learning Forecasting and Automatic Statistical Data Acquisition: Development and Implementation Study. Yu CS; Chang SS; Chang TH; Wu JL; Lin YJ; Chien HF; Chen RJ J Med Internet Res; 2021 May; 23(5):e27806. PubMed ID: 33900932 [TBL] [Abstract][Full Text] [Related]
19. Prediction and analysis of COVID-19 daily new cases and cumulative cases: times series forecasting and machine learning models. Wang Y; Yan Z; Wang D; Yang M; Li Z; Gong X; Wu D; Zhai L; Zhang W; Wang Y BMC Infect Dis; 2022 May; 22(1):495. PubMed ID: 35614387 [TBL] [Abstract][Full Text] [Related]
20. Forecasting the seasonality and trend of pulmonary tuberculosis in Jiangsu Province of China using advanced statistical time-series analyses. Liu Q; Li Z; Ji Y; Martinez L; Zia UH; Javaid A; Lu W; Wang J Infect Drug Resist; 2019; 12():2311-2322. PubMed ID: 31440067 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]