These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 36177249)

  • 1. Current Knowledge and Novel Frontiers in Lower Urinary Tract Dysfunction after Spinal Cord Injury: Basic Research Perspectives.
    Wada N; Karnup S; Kadekawa K; Shimizu N; Kwon J; Shimizu T; Gotoh D; Kakizaki H; de Groat WC; Yoshimura N
    Urol Sci; 2022; 33(3):101-113. PubMed ID: 36177249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Mechanisms of Neurogenic Lower Urinary Tract Dysfunction after Spinal Cord Injury.
    Shimizu N; Saito T; Wada N; Hashimoto M; Shimizu T; Kwon J; Cho KJ; Saito M; Karnup S; de Groat WC; Yoshimura N
    Int J Mol Sci; 2023 Apr; 24(9):. PubMed ID: 37175592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasticity in reflex pathways to the lower urinary tract following spinal cord injury.
    de Groat WC; Yoshimura N
    Exp Neurol; 2012 May; 235(1):123-32. PubMed ID: 21596038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms underlying the recovery of lower urinary tract function following spinal cord injury.
    de Groat WC; Yoshimura N
    Prog Brain Res; 2006; 152():59-84. PubMed ID: 16198694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Characterization of Non-Neurogenic and Neurogenic Lower Urinary Tract Dysfunction (LUTD) in SCI-Induced and Partial Bladder Outlet Obstruction Mouse Models.
    von Siebenthal M; Akshay A; Besic M; Schneider MP; Hashemi Gheinani A; Burkhard FC; Monastyrskaya K
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in afferent activity after spinal cord injury.
    de Groat WC; Yoshimura N
    Neurourol Urodyn; 2010; 29(1):63-76. PubMed ID: 20025033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model-based analysis of the acute effects of transcutaneous magnetic spinal cord stimulation on micturition after spinal cord injury in humans.
    Fardadi M; Leiter JC; Lu DC; Iwasaki T
    PLoS Comput Biol; 2024 Jul; 20(7):e1012237. PubMed ID: 38950067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bladder afferent pathway and spinal cord injury: possible mechanisms inducing hyperreflexia of the urinary bladder.
    Yoshimura N
    Prog Neurobiol; 1999 Apr; 57(6):583-606. PubMed ID: 10221783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurochemical plasticity and the role of neurotrophic factors in bladder reflex pathways after spinal cord injury.
    Vizzard MA
    Prog Brain Res; 2006; 152():97-115. PubMed ID: 16198696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathophysiology, Clinical Importance, and Management of Neurogenic Lower Urinary Tract Dysfunction Caused by Suprasacral Spinal Cord Injury.
    Hu HZ; Granger N; Jeffery ND
    J Vet Intern Med; 2016 Sep; 30(5):1575-1588. PubMed ID: 27527382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrative control of the lower urinary tract: preclinical perspective.
    de Groat WC
    Br J Pharmacol; 2006 Feb; 147 Suppl 2(Suppl 2):S25-40. PubMed ID: 16465182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-dependent progression of neurogenic lower urinary tract dysfunction after spinal cord injury in the mouse model.
    Saito T; Gotoh D; Wada N; Tyagi P; Minagawa T; Ogawa T; Ishizuka O; Yoshimura N
    Am J Physiol Renal Physiol; 2021 Jul; 321(1):F26-F32. PubMed ID: 33969698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of capsaicin-sensitive C-fiber afferent pathways in the control of micturition in spinal-intact and spinal cord-injured mice.
    Kadekawa K; Majima T; Shimizu T; Wada N; de Groat WC; Kanai AJ; Goto M; Yoshiyama M; Sugaya K; Yoshimura N
    Am J Physiol Renal Physiol; 2017 Sep; 313(3):F796-F804. PubMed ID: 28637786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Therapeutic receptor targets for lower urinary tract dysfunction.
    Yoshimura N; Kaiho Y; Miyazato M; Yunoki T; Tai C; Chancellor MB; Tyagi P
    Naunyn Schmiedebergs Arch Pharmacol; 2008 Jun; 377(4-6):437-48. PubMed ID: 18034230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epidemiology and pathophysiology of neurogenic bladder after spinal cord injury.
    Hamid R; Averbeck MA; Chiang H; Garcia A; Al Mousa RT; Oh SJ; Patel A; Plata M; Del Popolo G
    World J Urol; 2018 Oct; 36(10):1517-1527. PubMed ID: 29752515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-World Data Regarding Satisfaction to Botulinum Toxin A Injection into the Urethral Sphincter and Further Bladder Management for Voiding Dysfunction among Patients with Spinal Cord Injury and Voiding Dysfunction.
    Lee CL; Jhang JF; Jiang YH; Kuo HC
    Toxins (Basel); 2022 Jan; 14(1):. PubMed ID: 35051007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applied anatomy and physiology of the feline lower urinary tract.
    Fletcher TF
    Vet Clin North Am Small Anim Pract; 1996 Mar; 26(2):181-96. PubMed ID: 8711856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuropeptide/Receptor expression and plasticity in micturition pathways.
    Merrill L; Girard B; Arms L; Guertin P; Vizzard MA
    Curr Pharm Des; 2013; 19(24):4411-22. PubMed ID: 23360273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural mechanisms underlying lower urinary tract dysfunction.
    Yoshimura N; Ogawa T; Miyazato M; Kitta T; Furuta A; Chancellor MB; Tyagi P
    Korean J Urol; 2014 Feb; 55(2):81-90. PubMed ID: 24578802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase relation changes between the firings of alpha and gamma-motoneurons and muscle spindle afferents in the sacral micturition centre during continence functions in brain-dead human and patients with spinal cord injury.
    Schalow G
    Electromyogr Clin Neurophysiol; 2010; 50(1):3-27. PubMed ID: 20349554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.