BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 36178078)

  • 1. New mechanistic insights into coupled binuclear copper monooxygenases from the recent elucidation of the ternary intermediate of tyrosinase.
    Kipouros I; Solomon EI
    FEBS Lett; 2023 Jan; 597(1):65-78. PubMed ID: 36178078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elucidation of the tyrosinase/O
    Kipouros I; Stańczak A; Ginsbach JW; Andrikopoulos PC; Rulíšek L; Solomon EI
    Proc Natl Acad Sci U S A; 2022 Aug; 119(33):e2205619119. PubMed ID: 35939688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for H-bonding interactions to the μ-η
    Kipouros I; Stańczak A; Culka M; Andris E; Machonkin TR; Rulíšek L; Solomon EI
    Chem Commun (Camb); 2022 Mar; 58(24):3913-3916. PubMed ID: 35237779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure/function correlations among coupled binuclear copper proteins through spectroscopic and reactivity studies of NspF.
    Ginsbach JW; Kieber-Emmons MT; Nomoto R; Noguchi A; Ohnishi Y; Solomon EI
    Proc Natl Acad Sci U S A; 2012 Jul; 109(27):10793-7. PubMed ID: 22711806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper-O2 reactivity of tyrosinase models towards external monophenolic substrates: molecular mechanism and comparison with the enzyme.
    Rolff M; Schottenheim J; Decker H; Tuczek F
    Chem Soc Rev; 2011 Jul; 40(7):4077-98. PubMed ID: 21416076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural insights into dioxygen-activating copper enzymes.
    Rosenzweig AC; Sazinsky MH
    Curr Opin Struct Biol; 2006 Dec; 16(6):729-35. PubMed ID: 17011183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper-Oxygen Dynamics in the Tyrosinase Mechanism.
    Fujieda N; Umakoshi K; Ochi Y; Nishikawa Y; Yanagisawa S; Kubo M; Kurisu G; Itoh S
    Angew Chem Int Ed Engl; 2020 Aug; 59(32):13385-13390. PubMed ID: 32356371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tyrosinase reactivity in a model complex: an alternative hydroxylation mechanism.
    Mirica LM; Vance M; Rudd DJ; Hedman B; Hodgson KO; Solomon EI; Stack TD
    Science; 2005 Jun; 308(5730):1890-2. PubMed ID: 15976297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental Evidence and Mechanistic Description of the Phenolic H-Transfer to the Cu
    Kipouros I; Stańczak A; Dunietz EM; Ginsbach JW; Srnec M; Rulíšek L; Solomon EI
    J Am Chem Soc; 2023 Oct; 145(42):22866-22870. PubMed ID: 37844210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. O2 activation by binuclear Cu sites: noncoupled versus exchange coupled reaction mechanisms.
    Chen P; Solomon EI
    Proc Natl Acad Sci U S A; 2004 Sep; 101(36):13105-10. PubMed ID: 15340147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic evaluation of catalase and peroxygenase activities of tyrosinase.
    Yamazaki S; Morioka C; Itoh S
    Biochemistry; 2004 Sep; 43(36):11546-53. PubMed ID: 15350140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monooxygenase activity of type 3 copper proteins.
    Itoh S; Fukuzumi S
    Acc Chem Res; 2007 Jul; 40(7):592-600. PubMed ID: 17461541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tyrosinase: the four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation.
    Ramsden CA; Riley PA
    Bioorg Med Chem; 2014 Apr; 22(8):2388-95. PubMed ID: 24656803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developing mononuclear copper-active-oxygen complexes relevant to reactive intermediates of biological oxidation reactions.
    Itoh S
    Acc Chem Res; 2015 Jul; 48(7):2066-74. PubMed ID: 26086527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembly of the oxy-tyrosinase core and the fundamental components of phenolic hydroxylation.
    Citek C; Lyons CT; Wasinger EC; Stack TD
    Nat Chem; 2012 Mar; 4(4):317-22. PubMed ID: 22437718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A stabilized mu-eta(2):eta(2) peroxodicopper(II) complex with a secondary diamine ligand and its tyrosinase-like reactivity.
    Mirica LM; Vance M; Rudd DJ; Hedman B; Hodgson KO; Solomon EI; Stack TD
    J Am Chem Soc; 2002 Aug; 124(32):9332-3. PubMed ID: 12167002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reaction coordinate of a functional model of tyrosinase: spectroscopic and computational characterization.
    Op't Holt BT; Vance MA; Mirica LM; Heppner DE; Stack TD; Solomon EI
    J Am Chem Soc; 2009 May; 131(18):6421-38. PubMed ID: 19368383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and reactivity models for copper oxygenases: cooperative effects and novel reactivities.
    Serrano-Plana J; Garcia-Bosch I; Company A; Costas M
    Acc Chem Res; 2015 Aug; 48(8):2397-406. PubMed ID: 26207342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling tyrosinase and catecholase activity using new m-Xylyl-based ligands with bidentate alkylamine terminal coordination.
    Mandal S; Mukherjee J; Lloret F; Mukherjee R
    Inorg Chem; 2012 Dec; 51(24):13148-61. PubMed ID: 23194383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. mu-eta2:eta2-peroxodicopper(II) complex with a secondary diamine ligand: a functional model of tyrosinase.
    Mirica LM; Rudd DJ; Vance MA; Solomon EI; Hodgson KO; Hedman B; Stack TD
    J Am Chem Soc; 2006 Mar; 128(8):2654-65. PubMed ID: 16492052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.