These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36178100)

  • 1. Interplay between interdiffusion and shape transformations in nanoalloys evolving from core-shell to intermixed structures.
    Nelli D; Mottet C; Ferrando R
    Faraday Discuss; 2023 Jan; 242(0):52-68. PubMed ID: 36178100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Symmetry breaking and morphological instabilities in core-shell metallic nanoparticles.
    Ferrando R
    J Phys Condens Matter; 2015 Jan; 27(1):013003. PubMed ID: 25485754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural evolution of Pt-Au nanoalloys during heating process: comparison of random and core-shell orderings.
    Yang Z; Yang X; Xu Z; Liu S
    Phys Chem Chem Phys; 2009 Aug; 11(29):6249-55. PubMed ID: 19606336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth pathways of Cu shells on Au and AuCu seeds: interdiffusion, shape transformations, strained shells and patchy surfaces.
    El Koraychy EY; Ferrando R
    Nanoscale Adv; 2023 Oct; 5(21):5838-5849. PubMed ID: 37881698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size and shape effects on chemical ordering in Ni-Pt nanoalloys.
    Camilos P; Varvenne C; Mottet C
    Phys Chem Chem Phys; 2024 May; 26(21):15192-15204. PubMed ID: 38764434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth pathways of exotic Cu@Au core@shell structures: the key role of misfit strain.
    El Koraychy EY; Ferrando R
    Nanoscale; 2023 Feb; 15(5):2384-2393. PubMed ID: 36648302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Core-shell vs. multi-shell formation in nanoalloy evolution from disordered configurations.
    Nelli D; Ferrando R
    Nanoscale; 2019 Jul; 11(27):13040-13050. PubMed ID: 31265042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of composition and architecture on the thermodynamic behavior of AuCu nanoparticles.
    Yang WH; Yu FQ; Huang R; Lin YX; Wen YH
    Nanoscale; 2024 Jul; 16(27):13197-13209. PubMed ID: 38916453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal Stability of Platinum-Cobalt Bimetallic Nanoparticles: Chemically Disordered Alloys, Ordered Intermetallics, and Core-Shell Structures.
    Huang R; Shao GF; Zhang Y; Wen YH
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12486-12493. PubMed ID: 28349693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural transformations in single-crystalline AgPd nanoalloys from multiscale deep potential molecular dynamics.
    Guo L; Jin T; Shan S; Tang Q; Li Z; Wang C; Wang J; Pan B; Wang Q; Chen F
    J Chem Phys; 2023 Jul; 159(2):. PubMed ID: 37428049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ageing of out-of-equilibrium nanoalloys by a kinetic mean-field approach.
    Berthier F; Tadjine A; Legrand B
    Phys Chem Chem Phys; 2015 Nov; 17(42):28193-9. PubMed ID: 25821082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling free and oxide-supported nanoalloy catalysts: comparison of bulk-immiscible Pd-Ir and Au-Rh systems and influence of a TiO
    Demiroglu I; Fan TE; Li ZY; Yuan J; Liu TD; Piccolo L; Johnston RL
    Faraday Discuss; 2018 Sep; 208(0):53-66. PubMed ID: 29796531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold-palladium core@shell nanoalloys: experiments and simulations.
    Spitale A; Perez MA; Mejía-Rosales S; Yacamán MJ; Mariscal MM
    Phys Chem Chem Phys; 2015 Nov; 17(42):28060-7. PubMed ID: 25735727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo simulation of surface segregation phenomena in extended and nanoparticle surfaces of Pt-Pd alloys.
    Duan Z; Wang G
    J Phys Condens Matter; 2011 Nov; 23(47):475301. PubMed ID: 22075765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competition between stability of icosahedral and cuboctahedral morphologies in bimetallic nanoalloys.
    Akbarzadeh H; Abbaspour M; Mehrjouei E
    Phys Chem Chem Phys; 2017 Jun; 19(22):14659-14670. PubMed ID: 28537621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exotic behavior of the outer shell of bimetallic nanoalloys.
    Delfour L; Creuze J; Legrand B
    Phys Rev Lett; 2009 Nov; 103(20):205701. PubMed ID: 20365993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Underlying mechanisms of gold nanoalloys stabilization.
    Pena LB; Da Silva LR; Da Silva JLF; Galvão BRL
    J Chem Phys; 2023 Dec; 159(24):. PubMed ID: 38153152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beyond Magic Numbers: Atomic Scale Equilibrium Nanoparticle Shapes for Any Size.
    Rahm JM; Erhart P
    Nano Lett; 2017 Sep; 17(9):5775-5781. PubMed ID: 28792765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of structures and thermodynamics of CuNi nanoalloys using a new DFT-fitted atomistic potential.
    Panizon E; Olmos-Asar JA; Peressi M; Ferrando R
    Phys Chem Chem Phys; 2015 Nov; 17(42):28068-75. PubMed ID: 25743271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diverse melting modes and structural collapse of hollow bimetallic core-shell nanoparticles: a perspective from molecular dynamics simulations.
    Huang R; Shao GF; Zeng XM; Wen YH
    Sci Rep; 2014 Nov; 4():7051. PubMed ID: 25394424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.