These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 36178210)
1. Electronic Configurations of 3d Transition-Metal Compounds Using Local Structure and Neural Networks. Zhang W; Berthebaud D; Halet JF; Mori T J Phys Chem A; 2022 Oct; 126(40):7373-7381. PubMed ID: 36178210 [TBL] [Abstract][Full Text] [Related]
2. Prediction of Energetic Material Properties from Electronic Structure Using 3D Convolutional Neural Networks. Casey AD; Son SF; Bilionis I; Barnes BC J Chem Inf Model; 2020 Oct; 60(10):4457-4473. PubMed ID: 33054184 [TBL] [Abstract][Full Text] [Related]
3. Predicting electronic structure properties of transition metal complexes with neural networks. Janet JP; Kulik HJ Chem Sci; 2017 Jul; 8(7):5137-5152. PubMed ID: 30155224 [TBL] [Abstract][Full Text] [Related]
5. Efficient and Accurate Simulations of Vibrational and Electronic Spectra with Symmetry-Preserving Neural Network Models for Tensorial Properties. Zhang Y; Ye S; Zhang J; Hu C; Jiang J; Jiang B J Phys Chem B; 2020 Aug; 124(33):7284-7290. PubMed ID: 32786714 [TBL] [Abstract][Full Text] [Related]
6. Fast and Accurate Molecular Property Prediction: Learning Atomic Interactions and Potentials with Neural Networks. Tsubaki M; Mizoguchi T J Phys Chem Lett; 2018 Oct; 9(19):5733-5741. PubMed ID: 30081630 [TBL] [Abstract][Full Text] [Related]
7. Predicting Energetics Materials' Crystalline Density from Chemical Structure by Machine Learning. Nguyen P; Loveland D; Kim JT; Karande P; Hiszpanski AM; Han TY J Chem Inf Model; 2021 May; 61(5):2147-2158. PubMed ID: 33899482 [TBL] [Abstract][Full Text] [Related]
8. Predicting Local Protein 3D Structures Using Clustering Deep Recurrent Neural Network. Zhong W; Gu F IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):593-604. PubMed ID: 32750880 [TBL] [Abstract][Full Text] [Related]
9. Transferable Multilevel Attention Neural Network for Accurate Prediction of Quantum Chemistry Properties via Multitask Learning. Liu Z; Lin L; Jia Q; Cheng Z; Jiang Y; Guo Y; Ma J J Chem Inf Model; 2021 Mar; 61(3):1066-1082. PubMed ID: 33629839 [TBL] [Abstract][Full Text] [Related]
10. Machine learnt bond order potential to model metal-organic (Co-C) heterostructures. Narayanan B; Chan H; Kinaci A; Sen FG; Gray SK; Chan MKY; Sankaranarayanan SKRS Nanoscale; 2017 Nov; 9(46):18229-18239. PubMed ID: 29043353 [TBL] [Abstract][Full Text] [Related]
11. Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties. Xie T; Grossman JC Phys Rev Lett; 2018 Apr; 120(14):145301. PubMed ID: 29694125 [TBL] [Abstract][Full Text] [Related]
12. Seeing Is Believing: Experimental Spin States from Machine Learning Model Structure Predictions. Taylor MG; Yang T; Lin S; Nandy A; Janet JP; Duan C; Kulik HJ J Phys Chem A; 2020 Apr; 124(16):3286-3299. PubMed ID: 32223165 [TBL] [Abstract][Full Text] [Related]
13. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties. Heine T Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917 [TBL] [Abstract][Full Text] [Related]
14. Density Prediction Models for Energetic Compounds Merely Using Molecular Topology. Yang C; Chen J; Wang R; Zhang M; Zhang C; Liu J J Chem Inf Model; 2021 Jun; 61(6):2582-2593. PubMed ID: 33844526 [TBL] [Abstract][Full Text] [Related]
15. Reorganization Energy Predictions with Graph Neural Networks Informed by Low-Cost Conformers. Li CH; Tabor DP J Phys Chem A; 2023 Apr; 127(15):3484-3489. PubMed ID: 37017992 [TBL] [Abstract][Full Text] [Related]
16. Enhancing Ferromagnetism and Tuning Electronic Properties of CrI Yang Q; Hu X; Shen X; Krasheninnikov AV; Chen Z; Sun L ACS Appl Mater Interfaces; 2021 May; 13(18):21593-21601. PubMed ID: 33904708 [TBL] [Abstract][Full Text] [Related]
17. Topological representations of crystalline compounds for the machine-learning prediction of materials properties. Jiang Y; Chen D; Chen X; Li T; Wei GW; Pan F NPJ Comput Mater; 2021; 7():. PubMed ID: 34676106 [TBL] [Abstract][Full Text] [Related]
18. Orbital Mixer: Using Atomic Orbital Features for Basis-Dependent Prediction of Molecular Wavefunctions. Shmilovich K; Willmott D; Batalov I; Kornbluth M; Mailoa J; Kolter JZ J Chem Theory Comput; 2022 Oct; 18(10):6021-6030. PubMed ID: 36122312 [TBL] [Abstract][Full Text] [Related]
19. Machine learning to tame divergent density functional approximations: a new path to consensus materials design principles. Duan C; Chen S; Taylor MG; Liu F; Kulik HJ Chem Sci; 2021 Oct; 12(39):13021-13036. PubMed ID: 34745533 [TBL] [Abstract][Full Text] [Related]