These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36178491)

  • 1. Epistasis-Driven Evolution of the SARS-CoV-2 Secondary Structure.
    Alemrajabi M; Macias Calix K; Assis R
    J Mol Evol; 2022 Dec; 90(6):429-437. PubMed ID: 36178491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong epistatic selection on the RNA secondary structure of HIV.
    Assis R
    PLoS Pathog; 2014 Sep; 10(9):e1004363. PubMed ID: 25210786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Base pairing constraints drive structural epistasis in ribosomal RNA sequences.
    Dutheil JY; Jossinet F; Westhof E
    Mol Biol Evol; 2010 Aug; 27(8):1868-76. PubMed ID: 20211929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) frameshifting pseudoknot.
    Jones CP; Ferré-D'Amaré AR
    RNA; 2022 Feb; 28(2):239-249. PubMed ID: 34845084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cis-mediated interactions of the SARS-CoV-2 frameshift RNA alter its conformations and affect function.
    Pekarek L; Zimmer MM; Gribling-Burrer AS; Buck S; Smyth R; Caliskan N
    Nucleic Acids Res; 2023 Jan; 51(2):728-743. PubMed ID: 36537211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of an internal loop motif with three consecutive U•U mismatches from stem-loop 1 in the 3'-UTR of the SARS-CoV-2 genomic RNA.
    Vögele J; Duchardt-Ferner E; Bains JK; Knezic B; Wacker A; Sich C; Weigand JE; Šponer J; Schwalbe H; Krepl M; Wöhnert J
    Nucleic Acids Res; 2024 Jun; 52(11):6687-6706. PubMed ID: 38783391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive in vivo secondary structure of the SARS-CoV-2 genome reveals novel regulatory motifs and mechanisms.
    Huston NC; Wan H; Strine MS; de Cesaris Araujo Tavares R; Wilen CB; Pyle AM
    Mol Cell; 2021 Feb; 81(3):584-598.e5. PubMed ID: 33444546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global analysis of more than 50,000 SARS-CoV-2 genomes reveals epistasis between eight viral genes.
    Zeng HL; Dichio V; Rodríguez Horta E; Thorell K; Aurell E
    Proc Natl Acad Sci U S A; 2020 Dec; 117(49):31519-31526. PubMed ID: 33203681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Programmed ribosomal frameshifting in decoding the SARS-CoV genome.
    Baranov PV; Henderson CM; Anderson CB; Gesteland RF; Atkins JF; Howard MT
    Virology; 2005 Feb; 332(2):498-510. PubMed ID: 15680415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome.
    Bhatt PR; Scaiola A; Loughran G; Leibundgut M; Kratzel A; Meurs R; Dreos R; O'Connor KM; McMillan A; Bode JW; Thiel V; Gatfield D; Atkins JF; Ban N
    Science; 2021 Jun; 372(6548):1306-1313. PubMed ID: 34029205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shapify: Paths to SARS-CoV-2 frameshifting pseudoknot.
    Trinity L; Wark I; Lansing L; Jabbari H; Stege U
    PLoS Comput Biol; 2023 Feb; 19(2):e1010922. PubMed ID: 36854032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-altering mutations of the SARS-CoV-2 frameshifting RNA element.
    Schlick T; Zhu Q; Jain S; Yan S
    Biophys J; 2021 Mar; 120(6):1040-1053. PubMed ID: 33096082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-Frameshifting Ligand Active against SARS Coronavirus-2 Is Resistant to Natural Mutations of the Frameshift-Stimulatory Pseudoknot.
    Neupane K; Munshi S; Zhao M; Ritchie DB; Ileperuma SM; Woodside MT
    J Mol Biol; 2020 Oct; 432(21):5843-5847. PubMed ID: 32920049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epistatic models predict mutable sites in SARS-CoV-2 proteins and epitopes.
    Rodriguez-Rivas J; Croce G; Muscat M; Weigt M
    Proc Natl Acad Sci U S A; 2022 Jan; 119(4):. PubMed ID: 35022216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Restriction of SARS-CoV-2 replication by targeting programmed -1 ribosomal frameshifting.
    Sun Y; Abriola L; Niederer RO; Pedersen SF; Alfajaro MM; Silva Monteiro V; Wilen CB; Ho YC; Gilbert WV; Surovtseva YV; Lindenbach BD; Guo JU
    Proc Natl Acad Sci U S A; 2021 Jun; 118(26):. PubMed ID: 34185680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Length-dependent motions of SARS-CoV-2 frameshifting RNA pseudoknot and alternative conformations suggest avenues for frameshifting suppression.
    Yan S; Zhu Q; Jain S; Schlick T
    Nat Commun; 2022 Jul; 13(1):4284. PubMed ID: 35879278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA structure-altering mutations underlying positive selection on Spike protein reveal novel putative signatures to trace crossing host-species barriers in
    Rojas-Cruz AF; Gallego-Gómez JC; Bermúdez-Santana CI
    RNA Biol; 2022 Jan; 19(1):1019-1044. PubMed ID: 36102368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Secondary structural ensembles of the SARS-CoV-2 RNA genome in infected cells.
    Lan TCT; Allan MF; Malsick LE; Woo JZ; Zhu C; Zhang F; Khandwala S; Nyeo SSY; Sun Y; Guo JU; Bathe M; Näär A; Griffiths A; Rouskin S
    Nat Commun; 2022 Mar; 13(1):1128. PubMed ID: 35236847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A three-stemmed mRNA pseudoknot in the SARS coronavirus frameshift signal.
    Plant EP; Pérez-Alvarado GC; Jacobs JL; Mukhopadhyay B; Hennig M; Dinman JD
    PLoS Biol; 2005 Jun; 3(6):e172. PubMed ID: 15884978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly conserved s2m element of SARS-CoV-2 dimerizes via a kissing complex and interacts with host miRNA-1307-3p.
    Imperatore JA; Cunningham CL; Pellegrene KA; Brinson RG; Marino JP; Evanseck JD; Mihailescu MR
    Nucleic Acids Res; 2022 Jan; 50(2):1017-1032. PubMed ID: 34908151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.