These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 36178619)

  • 1. Solvent-Induced Protein Precipitation for Drug Target Discovery.
    Zhang X; Hu L; Ye M
    Methods Mol Biol; 2023; 2554():35-45. PubMed ID: 36178619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvent-Induced Protein Precipitation for Drug Target Discovery on the Proteomic Scale.
    Zhang X; Wang Q; Li Y; Ruan C; Wang S; Hu L; Ye M
    Anal Chem; 2020 Jan; 92(1):1363-1371. PubMed ID: 31794197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Recent advances in protein precipitation-based methods for drug-target screening].
    Liu T; Qin WJ; Yang HJ
    Se Pu; 2024 Jul; 42(7):613-622. PubMed ID: 38966970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvent-induced proteome profiling for proteomic quantitation and target discovery of small molecular drugs.
    Yu C; Chen X; Xu W; Li S; Chai Q; Zhang Y
    Proteomics; 2023 Jun; 23(12):e2200281. PubMed ID: 36843329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing target engagement using proteome-wide solvent shift assays.
    Van Vranken JG; Li J; Mitchell DC; Navarrete-Perea J; Gygi SP
    Elife; 2021 Dec; 10():. PubMed ID: 34878405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. False-positive rate determination of protein target discovery using a covalent modification- and mass spectrometry-based proteomics platform.
    Strickland EC; Geer MA; Hong J; Fitzgerald MC
    J Am Soc Mass Spectrom; 2014 Jan; 25(1):132-40. PubMed ID: 24114261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simplified proteomics approach to discover protein-ligand interactions.
    Chang Y; Schlebach JP; VerHeul RA; Park C
    Protein Sci; 2012 Sep; 21(9):1280-7. PubMed ID: 22733688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free target protein characterization for small molecule drugs: recent advances in methods and applications.
    Feng F; Zhang W; Chai Y; Guo D; Chen X
    J Pharm Biomed Anal; 2023 Jan; 223():115107. PubMed ID: 36334421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SILAC-pulse proteolysis: A mass spectrometry-based method for discovery and cross-validation in proteome-wide studies of ligand binding.
    Adhikari J; Fitzgerald MC
    J Am Soc Mass Spectrom; 2014 Dec; 25(12):2073-83. PubMed ID: 25315461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mass Spectrometry-Based Chemical Proteomics for Drug Target Discoveries.
    Fedorov II; Lineva VI; Tarasova IA; Gorshkov MV
    Biochemistry (Mosc); 2022 Sep; 87(9):983-994. PubMed ID: 36180990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Analysis of Mass-Spectrometry-Based Proteomic Methods for Protein Target Discovery Using a One-Pot Approach.
    Cabrera A; Wiebelhaus N; Quan B; Ma R; Meng H; Fitzgerald MC
    J Am Soc Mass Spectrom; 2020 Feb; 31(2):217-226. PubMed ID: 32031398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement and utilization of the proteomic reactivity by mass spectrometry.
    Punzalan C; Wang L; Bajrami B; Yao X
    Mass Spectrom Rev; 2024; 43(1):166-192. PubMed ID: 36924435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The emerging role of mass spectrometry-based proteomics in drug discovery.
    Meissner F; Geddes-McAlister J; Mann M; Bantscheff M
    Nat Rev Drug Discov; 2022 Sep; 21(9):637-654. PubMed ID: 35351998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a target identification approach using native mass spectrometry.
    Liu M; Van Voorhis WC; Quinn RJ
    Sci Rep; 2021 Jan; 11(1):2387. PubMed ID: 33504855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SEC-TID: A Label-Free Method for Small-Molecule Target Identification.
    Salcius M; Bauer AJ; Hao Q; Li S; Tutter A; Raphael J; Jahnke W; Rondeau JM; Bourgier E; Tallarico J; Michaud GA
    J Biomol Screen; 2014 Jul; 19(6):917-27. PubMed ID: 24554445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ligand and Target Discovery by Fragment-Based Screening in Human Cells.
    Parker CG; Galmozzi A; Wang Y; Correia BE; Sasaki K; Joslyn CM; Kim AS; Cavallaro CL; Lawrence RM; Johnson SR; Narvaiza I; Saez E; Cravatt BF
    Cell; 2017 Jan; 168(3):527-541.e29. PubMed ID: 28111073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Tale of Two Tails: Efficient Profiling of Protein Degraders by Specific Functional and Target Engagement Readouts.
    Chernobrovkin AL; Cázares-Körner C; Friman T; Caballero IM; Amadio D; Martinez Molina D
    SLAS Discov; 2021 Apr; 26(4):534-546. PubMed ID: 33445986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Profiling the Protein Targets of Unmodified Bio-Active Molecules with Drug Affinity Responsive Target Stability and Liquid Chromatography/Tandem Mass Spectrometry.
    Hwang HY; Kim TY; Szász MA; Dome B; Malm J; Marko-Varga G; Kwon HJ
    Proteomics; 2020 May; 20(9):e1900325. PubMed ID: 31926115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studying protein-protein affinity and immobilized ligand-protein affinity interactions using MS-based methods.
    Kool J; Jonker N; Irth H; Niessen WM
    Anal Bioanal Chem; 2011 Sep; 401(4):1109-25. PubMed ID: 21755271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Target identification of natural and traditional medicines with quantitative chemical proteomics approaches.
    Wang J; Gao L; Lee YM; Kalesh KA; Ong YS; Lim J; Jee JE; Sun H; Lee SS; Hua ZC; Lin Q
    Pharmacol Ther; 2016 Jun; 162():10-22. PubMed ID: 26808165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.