These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 36178807)

  • 21. Membrane-Current Collector-Based Flow-Electrode Capacitive Deionization System: A Novel Stack Configuration for Scale-Up Desalination.
    Xu L; Mao Y; Zong Y; Peng S; Zhang X; Wu D
    Environ Sci Technol; 2021 Oct; 55(19):13286-13296. PubMed ID: 34529405
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of capacitive and electrodialytic contributions to water desalination by flow-electrode CDI.
    Ma J; He C; He D; Zhang C; Waite TD
    Water Res; 2018 Nov; 144():296-303. PubMed ID: 30053621
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of long-term performance of a continuously operated flow-electrode CDI system for salt removal from brackish waters.
    Zhang C; Wu L; Ma J; Wang M; Sun J; Waite TD
    Water Res; 2020 Apr; 173():115580. PubMed ID: 32065937
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electron Transfer of Activated Carbon to Anode Excites and Regulates Desalination in Flow Electrode Capacitive Deionization.
    Wang T; Zhang Z; Gu Z; Hu C; Qu J
    Environ Sci Technol; 2023 Feb; 57(6):2566-2574. PubMed ID: 36719078
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrosorptive removal of salt ions from water by membrane capacitive deionization (MCDI): characterization, adsorption equilibrium, and kinetics.
    Li G; Cai W; Zhao R; Hao L
    Environ Sci Pollut Res Int; 2019 Jun; 26(17):17787-17796. PubMed ID: 31030403
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flow Electrode Capacitive Deionization (FCDI): Recent Developments, Environmental Applications, and Future Perspectives.
    Zhang C; Ma J; Wu L; Sun J; Wang L; Li T; Waite TD
    Environ Sci Technol; 2021 Apr; 55(8):4243-4267. PubMed ID: 33724803
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simultaneous removal of oil and grease, and heavy metals from artificial bilge water using electro-coagulation/flotation.
    Rincón GJ; La Motta EJ
    J Environ Manage; 2014 Nov; 144():42-50. PubMed ID: 24908614
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Denitrification enhancement by electro-adsorption/reduction in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) with copper electrode.
    Chen L; He F; Li F
    Chemosphere; 2022 Mar; 291(Pt 1):132732. PubMed ID: 34743794
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Preparation of NiAl-MMO Films Electrode and Its Capacitive Deionization Property].
    Wang T; Zhu CS; Hu CZ
    Huan Jing Ke Xue; 2016 Feb; 37(2):602-8. PubMed ID: 27363150
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Energetic Comparison of Flow-Electrode Capacitive Deionization and Membrane Technology: Assessment on Applicability in Desalination Fields.
    Lim J; Lee S; Lee H; Hong S
    Environ Sci Technol; 2024 Apr; 58(14):6181-6191. PubMed ID: 38536729
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Capacitive Removal of Heavy Metal Ions from Wastewater
    Mao M; Yan T; Shen J; Zhang J; Zhang D
    Environ Sci Technol; 2021 Mar; 55(5):3333-3340. PubMed ID: 33605148
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Precise manipulation of the charge percolation networks of flow-electrode capacitive deionization using a pulsed magnetic field.
    Xu L; Peng S; Wu K; Tang L; Wu M; Zong Y; Mao Y; Wu D
    Water Res; 2022 Aug; 222():118963. PubMed ID: 35970008
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Selective Capacitive Removal of Heavy Metal Ions from Wastewater over Lewis Base Sites of S-Doped Fe-N-C Cathodes
    Mao M; Yan T; Shen J; Zhang J; Zhang D
    Environ Sci Technol; 2021 Jun; 55(11):7665-7673. PubMed ID: 33983021
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hybrid capacitive deionization of NaCl and toxic heavy metal ions using faradic electrodes of silver nanospheres decorated pomegranate peel-derived activated carbon.
    Bharath G; Hai A; Rambabu K; Ahmed F; Haidyrah AS; Ahmad N; Hasan SW; Banat F
    Environ Res; 2021 Jun; 197():111110. PubMed ID: 33864793
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electro-enhanced removal of copper ions from aqueous solutions by capacitive deionization.
    Huang SY; Fan CS; Hou CH
    J Hazard Mater; 2014 Aug; 278():8-15. PubMed ID: 24937658
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of operational parameters on heavy metal removal by electrocoagulation.
    Bhagawan D; Poodari S; Pothuraju T; Srinivasulu D; Shankaraiah G; Yamuna Rani M; Himabindu V; Vidyavathi S
    Environ Sci Pollut Res Int; 2014 Dec; 21(24):14166-73. PubMed ID: 25056749
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimization of process using carboxymethyl chitosan for the removal of mixed heavy metals from aqueous streams.
    Kavitha E; Kedia R; Babaria N; Prabhakar S; Rajesh MP
    Int J Biol Macromol; 2020 Apr; 149():404-416. PubMed ID: 31935405
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phosphate selective recovery by magnetic iron oxide impregnated carbon flow-electrode capacitive deionization (FCDI).
    Zhang C; Wang M; Xiao W; Ma J; Sun J; Mo H; Waite TD
    Water Res; 2021 Feb; 189():116653. PubMed ID: 33232816
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Scale-up and Modelling of Flow-electrode CDI Using Tubular Electrodes.
    He C; Lian B; Ma J; Zhang C; Wang Y; Mo H; Waite TD
    Water Res; 2021 Sep; 203():117498. PubMed ID: 34371229
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Flow-electrode capacitive deionization with highly enhanced salt removal performance utilizing high-aspect ratio functionalized carbon nanotubes.
    Cho Y; Yoo CY; Lee SW; Yoon H; Lee KS; Yang S; Kim DK
    Water Res; 2019 Mar; 151():252-259. PubMed ID: 30605773
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.