These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 36179018)
1. Regulation of autoimmune disease progression by Pik3ip1 through metabolic reprogramming in T cells and therapeutic implications. Xie W; Fang J; Shan Z; Guo J; Liao Y; Zou Z; Wang J; Wen S; Yang L; Zhang Y; Lu H; Zhao H; Kuang DM; Huang P; Chen Q; Wang Z Sci Adv; 2022 Sep; 8(39):eabo4250. PubMed ID: 36179018 [TBL] [Abstract][Full Text] [Related]
2. PIK3IP1: structure, aberration, function, and regulation in diseases. Jia Y; He P; Ma X; Lv K; Liu Y; Xu Y Eur J Pharmacol; 2024 Aug; 977():176753. PubMed ID: 38897445 [TBL] [Abstract][Full Text] [Related]
3. Pik3ip1 Is a Negative Immune Regulator that Inhibits Antitumor T-Cell Immunity. Chen Y; Wang J; Wang X; Li X; Song J; Fang J; Liu X; Liu T; Wang D; Li Q; Wen S; Ma D; Xia J; Luo L; Zheng SG; Cui J; Zeng G; Chen L; Cheng B; Wang Z Clin Cancer Res; 2019 Oct; 25(20):6180-6194. PubMed ID: 31350312 [TBL] [Abstract][Full Text] [Related]
4. Inhibition of T-cell activation by PIK3IP1. DeFrances MC; Debelius DR; Cheng J; Kane LP Eur J Immunol; 2012 Oct; 42(10):2754-9. PubMed ID: 22706993 [TBL] [Abstract][Full Text] [Related]
5. Cyclic AMP Pathway Suppress Autoimmune Neuroinflammation by Inhibiting Functions of Encephalitogenic CD4 T Cells and Enhancing M2 Macrophage Polarization at the Site of Inflammation. Veremeyko T; Yung AWY; Dukhinova M; Kuznetsova IS; Pomytkin I; Lyundup A; Strekalova T; Barteneva NS; Ponomarev ED Front Immunol; 2018; 9():50. PubMed ID: 29422898 [TBL] [Abstract][Full Text] [Related]
6. PIK3IP1, a negative regulator of PI3K, suppresses the development of hepatocellular carcinoma. He X; Zhu Z; Johnson C; Stoops J; Eaker AE; Bowen W; DeFrances MC Cancer Res; 2008 Jul; 68(14):5591-8. PubMed ID: 18632611 [TBL] [Abstract][Full Text] [Related]
7. Mechanism of oxidative stress p38MAPK-SGK1 signaling axis in experimental autoimmune encephalomyelitis (EAE). Wang L; Li B; Quan MY; Li L; Chen Y; Tan GJ; Zhang J; Liu XP; Guo L Oncotarget; 2017 Jun; 8(26):42808-42816. PubMed ID: 28467798 [TBL] [Abstract][Full Text] [Related]
8. Activation of mitogen-activated protein kinases in experimental autoimmune encephalomyelitis. Shin T; Ahn M; Jung K; Heo S; Kim D; Jee Y; Lim YK; Yeo EJ J Neuroimmunol; 2003 Jul; 140(1-2):118-25. PubMed ID: 12864979 [TBL] [Abstract][Full Text] [Related]
10. Glutaminase 1 Inhibition Reduces Glycolysis and Ameliorates Lupus-like Disease in MRL/lpr Mice and Experimental Autoimmune Encephalomyelitis. Kono M; Yoshida N; Maeda K; Suárez-Fueyo A; Kyttaris VC; Tsokos GC Arthritis Rheumatol; 2019 Nov; 71(11):1869-1878. PubMed ID: 31233276 [TBL] [Abstract][Full Text] [Related]
11. TRAIL-Mediated Suppression of T Cell Receptor Signaling Inhibits T Cell Activation and Inflammation in Experimental Autoimmune Encephalomyelitis. Chyuan IT; Tsai HF; Wu CS; Sung CC; Hsu PN Front Immunol; 2018; 9():15. PubMed ID: 29403497 [TBL] [Abstract][Full Text] [Related]
12. p38MAPK/SGK1 signaling regulates macrophage polarization in experimental autoimmune encephalomyelitis. Li B; Tan TB; Wang L; Zhao XY; Tan GJ Aging (Albany NY); 2019 Feb; 11(3):898-907. PubMed ID: 30716717 [TBL] [Abstract][Full Text] [Related]
13. Sex-specific control of central nervous system autoimmunity by p38 mitogen-activated protein kinase signaling in myeloid cells. Krementsov DN; Noubade R; Dragon JA; Otsu K; Rincon M; Teuscher C Ann Neurol; 2014 Jan; 75(1):50-66. PubMed ID: 24027119 [TBL] [Abstract][Full Text] [Related]
14. Bee Venom Acupuncture Alleviates Experimental Autoimmune Encephalomyelitis by Upregulating Regulatory T Cells and Suppressing Th1 and Th17 Responses. Lee MJ; Jang M; Choi J; Lee G; Min HJ; Chung WS; Kim JI; Jee Y; Chae Y; Kim SH; Lee SJ; Cho IH Mol Neurobiol; 2016 Apr; 53(3):1419-1445. PubMed ID: 25579380 [TBL] [Abstract][Full Text] [Related]
15. Activation of p38 MAPK in CD4 T cells controls IL-17 production and autoimmune encephalomyelitis. Noubade R; Krementsov DN; Del Rio R; Thornton T; Nagaleekar V; Saligrama N; Spitzack A; Spach K; Sabio G; Davis RJ; Rincon M; Teuscher C Blood; 2011 Sep; 118(12):3290-300. PubMed ID: 21791428 [TBL] [Abstract][Full Text] [Related]
16. PIK3IP1 Promotes Extrafollicular Class Switching in T-Dependent Immune Responses. Ottens K; Schneider J; Kane LP; Satterthwaite AB J Immunol; 2020 Oct; 205(8):2100-2108. PubMed ID: 32887751 [TBL] [Abstract][Full Text] [Related]
17. PIK3IP1/TrIP restricts activation of T cells through inhibition of PI3K/Akt. Uche UU; Piccirillo AR; Kataoka S; Grebinoski SJ; D'Cruz LM; Kane LP J Exp Med; 2018 Dec; 215(12):3165-3179. PubMed ID: 30429249 [TBL] [Abstract][Full Text] [Related]
18. Special AT-rich sequence binding protein 1 is required for maintenance of T cell receptor responsiveness and development of experimental autoimmune encephalomyelitis. Akiba Y; Kuwabara T; Mukozu T; Mikami T; Kondo M Microbiol Immunol; 2018 Apr; 62(4):255-268. PubMed ID: 29388727 [TBL] [Abstract][Full Text] [Related]
20. Nordihydroguaiaretic acid can suppress progression of experimental autoimmune encephalomyelitis. Wang L; Li L; Quan MY; Wang D; Jia Z; Li ZF; Li B; Guo L; Tan GJ IUBMB Life; 2018 May; 70(5):432-436. PubMed ID: 29637686 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]