BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 36179021)

  • 21. Amoeboid Swimming Is Propelled by Molecular Paddling in Lymphocytes.
    Aoun L; Farutin A; Garcia-Seyda N; Nègre P; Rizvi MS; Tlili S; Song S; Luo X; Biarnes-Pelicot M; Galland R; Sibarita JB; Michelot A; Hivroz C; Rafai S; Valignat MP; Misbah C; Theodoly O
    Biophys J; 2020 Sep; 119(6):1157-1177. PubMed ID: 32882187
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A simple active fluid model unites cytokinesis, cell crawling, and axonal outgrowth.
    Craig EM; Oprea F; Alam S; Grodsky A; Miller KE
    bioRxiv; 2024 May; ():. PubMed ID: 38826455
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Melanoma cells adopt features of both mesenchymal and amoeboid migration within confining channels.
    Gabbireddy SR; Vosatka KW; Chung AJ; Logue JS
    Sci Rep; 2021 Sep; 11(1):17804. PubMed ID: 34493759
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Zebrafish Primordial Germ Cell Migration.
    Aalto A; Olguin-Olguin A; Raz E
    Front Cell Dev Biol; 2021; 9():684460. PubMed ID: 34249937
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanical modes of 'amoeboid' cell migration.
    Lämmermann T; Sixt M
    Curr Opin Cell Biol; 2009 Oct; 21(5):636-44. PubMed ID: 19523798
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Abl-related gene tyrosine kinase acts through p190RhoGAP to inhibit actomyosin contractility and regulate focal adhesion dynamics upon adhesion to fibronectin.
    Peacock JG; Miller AL; Bradley WD; Rodriguez OC; Webb DJ; Koleske AJ
    Mol Biol Cell; 2007 Oct; 18(10):3860-72. PubMed ID: 17652459
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polarized interfacial tension induces collective migration of cells, as a cluster, in a 3D tissue.
    Okuda S; Sato K
    Biophys J; 2022 May; 121(10):1856-1867. PubMed ID: 35525240
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells.
    Liu YJ; Le Berre M; Lautenschlaeger F; Maiuri P; Callan-Jones A; Heuzé M; Takaki T; Voituriez R; Piel M
    Cell; 2015 Feb; 160(4):659-672. PubMed ID: 25679760
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cancer Cells Invade Confined Microchannels via a Self-Directed Mesenchymal-to-Amoeboid Transition.
    Holle AW; Govindan Kutty Devi N; Clar K; Fan A; Saif T; Kemkemer R; Spatz JP
    Nano Lett; 2019 Apr; 19(4):2280-2290. PubMed ID: 30775927
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The activation of INF2 by Piezo1/Ca
    Kar N; Caruso AP; Prokopiou N; Logue JS
    bioRxiv; 2024 Mar; ():. PubMed ID: 37745412
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Actin cytoskeleton in mesenchymal-to-amoeboid transition of cancer cells.
    Alexandrova AY; Chikina AS; Svitkina TM
    Int Rev Cell Mol Biol; 2020; 356():197-256. PubMed ID: 33066874
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cell adhesion and its endocytic regulation in cell migration during neural development and cancer metastasis.
    Kawauchi T
    Int J Mol Sci; 2012; 13(4):4564-4590. PubMed ID: 22605996
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The amoeboid migration of monocytes in confining channels requires the local remodeling of the cortical actin cytoskeleton by cofilin-1.
    Ullo MF; D'Amico AE; Lavenus SB; Logue JS
    bioRxiv; 2024 Apr; ():. PubMed ID: 37609240
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The amoeboid migration of monocytes in confining channels requires the local remodeling of the cortical actin cytoskeleton by cofilin-1.
    Ullo MF; D'Amico AE; Lavenus SB; Logue JS
    Res Sq; 2023 Nov; ():. PubMed ID: 37961301
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Podosomes, But Not the Maturation Status, Determine the Protease-Dependent 3D Migration in Human Dendritic Cells.
    Cougoule C; Lastrucci C; Guiet R; Mascarau R; Meunier E; Lugo-Villarino G; Neyrolles O; Poincloux R; Maridonneau-Parini I
    Front Immunol; 2018; 9():846. PubMed ID: 29760696
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Force transmission during adhesion-independent migration.
    Bergert M; Erzberger A; Desai RA; Aspalter IM; Oates AC; Charras G; Salbreux G; Paluch EK
    Nat Cell Biol; 2015 Apr; 17(4):524-9. PubMed ID: 25774834
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Actin flows in cell migration: from locomotion and polarity to trajectories.
    Callan-Jones AC; Voituriez R
    Curr Opin Cell Biol; 2016 Feb; 38():12-7. PubMed ID: 26827283
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Podoplanin drives dedifferentiation and amoeboid invasion of melanoma.
    de Winde CM; George SL; Crosas-Molist E; Hari-Gupta Y; Arp AB; Benjamin AC; Millward LJ; Makris S; Carver A; Imperatore V; Martínez VG; Sanz-Moreno V; Acton SE
    iScience; 2021 Sep; 24(9):102976. PubMed ID: 34485858
    [TBL] [Abstract][Full Text] [Related]  

  • 39. TGF-β-Induced Transcription Sustains Amoeboid Melanoma Migration and Dissemination.
    Cantelli G; Orgaz JL; Rodriguez-Hernandez I; Karagiannis P; Maiques O; Matias-Guiu X; Nestle FO; Marti RM; Karagiannis SN; Sanz-Moreno V
    Curr Biol; 2015 Nov; 25(22):2899-914. PubMed ID: 26526369
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A computational study of amoeboid motility in 3D: the role of extracellular matrix geometry, cell deformability, and cell-matrix adhesion.
    Campbell EJ; Bagchi P
    Biomech Model Mechanobiol; 2021 Feb; 20(1):167-191. PubMed ID: 32772275
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.